Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network
- URL: http://arxiv.org/abs/2011.14301v1
- Date: Sun, 29 Nov 2020 06:42:08 GMT
- Title: Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network
- Authors: Haotian Xie, Yong Zhang, Jun Wang, Jingjing Zhang, Yifan Ma, Zhaogang
Yang
- Abstract summary: We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
- Score: 12.161266795282915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gleason grading system using histological images is the most powerful
diagnostic and prognostic predictor of prostate cancer. The current standard
inspection is evaluating Gleason H&E-stained histopathology images by
pathologists. However, it is complicated, time-consuming, and subject to
observers. Deep learning (DL) based-methods that automatically learn image
features and achieve higher generalization ability have attracted significant
attention. However, challenges remain especially using DL to train the whole
slide image (WSI), a predominant clinical source in the current diagnostic
setting, containing billions of pixels, morphological heterogeneity, and
artifacts. Hence, we proposed a convolutional neural network (CNN)-based
automatic classification method for accurate grading of PCa using whole slide
histopathology images. In this paper, a data augmentation method named
Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high
resolution and increase the diversity of WSIs. In addition, a distribution
correction (DC) module was developed to enhance the adaption of pretrained
model to the target dataset by adjusting the data distribution. Besides, a
Quadratic Weighted Mean Square Error (QWMSE) function was presented to reduce
the misdiagnosis caused by equal Euclidean distances. Our experiments indicated
the combination of PBIR, DC, and QWMSE function was necessary for achieving
superior expert-level performance, leading to the best results (0.8885
quadratic-weighted kappa coefficient).
Related papers
- Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Graph-Guided Test-Time Adaptation for Glaucoma Diagnosis using Fundus Photography [36.328434151676525]
Glaucoma is a leading cause of irreversible blindness worldwide.
Deep learning approaches using fundus images have largely improved early diagnosis of glaucoma.
Variations in images from different devices and locations (known as domain shifts) challenge the use of pre-trained models in real-world settings.
We propose a novel Graph-guided Test-Time Adaptation framework to generalize glaucoma diagnosis models to unseen test environments.
arXiv Detail & Related papers (2024-07-05T10:06:55Z) - GAN-based Super-Resolution and Segmentation of Retinal Layers in Optical
coherence tomography Scans [13.016298207860974]
We propose a Generative Adversarial Network (GAN)-based solution for super-resolution and segmentation of OCT scans of the retinal layers.
GAN-based segmentation model and evaluate incorporating popular networks, namely, U-Net and ResNet, in the GAN architecture.
Our best model configuration empirically achieved the Dice coefficient of 0.867 and mIOU of 0.765.
arXiv Detail & Related papers (2022-06-28T03:53:40Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Boosted EfficientNet: Detection of Lymph Node Metastases in Breast
Cancer Using Convolutional Neural Network [6.444922476853511]
The Convolutional Neutral Network (CNN) has been adapted to predict and classify lymph node metastasis in breast cancer.
We propose a novel data augmentation method named Random Center Cropping (RCC) to facilitate small resolution images.
arXiv Detail & Related papers (2020-10-10T15:18:56Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.