論文の概要: Versatile Inverse Reinforcement Learning via Cumulative Rewards
- arxiv url: http://arxiv.org/abs/2111.07667v1
- Date: Mon, 15 Nov 2021 10:49:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 00:25:00.236271
- Title: Versatile Inverse Reinforcement Learning via Cumulative Rewards
- Title(参考訳): 累積報酬による多用途逆強化学習
- Authors: Niklas Freymuth and Philipp Becker and Gerhard Neumann
- Abstract要約: 逆強化学習は、専門家の行動と意図を符号化することを目的として、専門家のデモンストレーションから報酬関数を推論する。
本稿では,得られた報酬を反復訓練された識別器の和として定式化し,これらの問題を克服する逆強化学習法を提案する。
- 参考スコア(独自算出の注目度): 22.56145954060092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse Reinforcement Learning infers a reward function from expert
demonstrations, aiming to encode the behavior and intentions of the expert.
Current approaches usually do this with generative and uni-modal models,
meaning that they encode a single behavior. In the common setting, where there
are various solutions to a problem and the experts show versatile behavior this
severely limits the generalization capabilities of these methods. We propose a
novel method for Inverse Reinforcement Learning that overcomes these problems
by formulating the recovered reward as a sum of iteratively trained
discriminators. We show on simulated tasks that our approach is able to recover
general, high-quality reward functions and produces policies of the same
quality as behavioral cloning approaches designed for versatile behavior.
- Abstract(参考訳): 逆強化学習は、専門家の行動と意図をエンコードすることを目的として、専門家のデモンストレーションから報酬関数を推論する。
現在のアプローチでは、通常、生成モデルとユニモーダルモデルを使ってこれを行います。
共通環境では、問題に対する様々な解決策があり、専門家が多用途な振る舞いを示す場合、これらの方法の一般化能力は厳しく制限される。
本稿では,得られた報酬を反復訓練された識別器の和として定式化し,これらの問題を克服する逆強化学習法を提案する。
提案手法は, 汎用的, 高品質な報酬関数を復元し, 多様な行動に配慮した行動クローニング手法と同じ品質のポリシーを実現できることを示す。
関連論文リスト
- Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching [23.600285251963395]
逆強化学習(IRL)では、エージェントは環境との相互作用を通じて専門家のデモンストレーションを再現しようとする。
伝統的にIRLは、敵が報酬モデルを探し出し、学習者が繰り返しRL手順で報酬を最適化する対戦ゲームとして扱われる。
直接ポリシー最適化によるIRLに対する新しいアプローチを提案し、リターンの線形因数分解を後継特徴の内積および報酬ベクトルとして活用する。
論文 参考訳(メタデータ) (2024-11-11T14:05:50Z) - Learning Causally Invariant Reward Functions from Diverse Demonstrations [6.351909403078771]
逆強化学習法は,マルコフ決定過程の報酬関数を,専門家によるデモンストレーションのデータセットに基づいて検索することを目的としている。
この適応は、環境力学の分布シフトの下で得られる報酬関数に基づいてポリシーが訓練されたときに、専門家データセットに過度に適合することが多い。
本研究では,報酬関数の一般化を目標とした因果不変原理に基づく逆強化学習手法の新しい正規化手法について検討する。
論文 参考訳(メタデータ) (2024-09-12T12:56:24Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILeは、学生のパフォーマンスと専門家によるデモンストレーションとの整合性に基づいて、動的報酬関数を学習する新しいトレーナー学生システムである。
RILeは、従来のメソッドがフェールする複雑な環境でのより良いパフォーマンスを実現し、複雑なシミュレートされたロボット移動タスクにおいて、既存のメソッドを2倍の性能で上回る。
論文 参考訳(メタデータ) (2024-06-12T17:56:31Z) - Behavior Alignment via Reward Function Optimization [23.92721220310242]
設計者のドメイン知識と環境のプライマリ報酬を反映した補助報酬を統合する新しいフレームワークを導入する。
提案手法の有効性を,小型実験から高次元制御課題に至るまで,様々な課題に対して評価する。
論文 参考訳(メタデータ) (2023-10-29T13:45:07Z) - Learning Long-Term Reward Redistribution via Randomized Return
Decomposition [18.47810850195995]
軌跡フィードバックを用いたエピソード強化学習の問題点について考察する。
これは、エージェントが各軌道の終端で1つの報酬信号しか取得できないような、報酬信号の極端な遅延を指す。
本稿では,代償再分配アルゴリズムであるランダムリターン分解(RRD)を提案する。
論文 参考訳(メタデータ) (2021-11-26T13:23:36Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z) - Outcome-Driven Reinforcement Learning via Variational Inference [95.82770132618862]
我々は、報酬を最大化する問題ではなく、望ましい結果を達成するための行動を推測する問題として、強化学習に関する新たな視点について論じる。
結果として得られる結果指向推論の問題を解決するため, 定型的報酬関数を導出する新しい変分推論定式を制定する。
我々は,この手法が報酬機能の設計を不要とし,効果的なゴール指向行動へと導くことを実証的に示す。
論文 参考訳(メタデータ) (2021-04-20T18:16:21Z) - Replacing Rewards with Examples: Example-Based Policy Search via
Recursive Classification [133.20816939521941]
標準的なマルコフ決定プロセス形式では、ユーザーは報酬関数を書き留めてタスクを指定する。
多くのシナリオでは、ユーザーはタスクを単語や数字で記述できないが、タスクが解決された場合の世界がどのように見えるかを簡単に示すことができる。
この観察に動機づけられた制御アルゴリズムは、成功した結果状態の例だけを考慮すれば、成功する結果につながる確率の高い状態を訪問することを目的としている。
論文 参考訳(メタデータ) (2021-03-23T16:19:55Z) - Regularized Inverse Reinforcement Learning [49.78352058771138]
逆強化学習(IRL)は、学習者が専門家の行動を模倣する能力を促進することを目的としている。
正規化IRLは学習者のポリシーに強い凸正則化を施す。
正規化IRLのためのトラクタブルソリューションとそれを得るための実用的な方法を提案する。
論文 参考訳(メタデータ) (2020-10-07T23:38:47Z) - Reward-Conditioned Policies [100.64167842905069]
模倣学習には、ほぼ最適の専門家データが必要である。
実演なしで指導的学習を通じて効果的な政策を学べるか?
政策探索の原則的手法として,このようなアプローチを導出する方法を示す。
論文 参考訳(メタデータ) (2019-12-31T18:07:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。