論文の概要: An argument for the impossibility of machine intelligence
- arxiv url: http://arxiv.org/abs/2111.07765v1
- Date: Wed, 20 Oct 2021 08:54:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-21 15:07:37.211869
- Title: An argument for the impossibility of machine intelligence
- Title(参考訳): 機械知能の不可能性に関する議論
- Authors: Jobst Landgrebe, Barry Smith
- Abstract要約: AIの担い手になり得るエージェント(デバイス)とは何かを定義する。
我々は「知性の主流」の定義が弱すぎて、昆虫に知性を割り当てる際に関係するものを捉えることができないことを示した。
私たちは、この定義によって知能の担い手となるために、AIエージェントが保持しなければならない特性を特定します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Since the noun phrase `artificial intelligence' (AI) was coined, it has been
debated whether humans are able to create intelligence using technology. We
shed new light on this question from the point of view of themodynamics and
mathematics. First, we define what it is to be an agent (device) that could be
the bearer of AI. Then we show that the mainstream definitions of
`intelligence' proposed by Hutter and others and still accepted by the AI
community are too weak even to capture what is involved when we ascribe
intelligence to an insect. We then summarise the highly useful definition of
basic (arthropod) intelligence proposed by Rodney Brooks, and we identify the
properties that an AI agent would need to possess in order to be the bearer of
intelligence by this definition. Finally, we show that, from the perspective of
the disciplines needed to create such an agent, namely mathematics and physics,
these properties are realisable by neither implicit nor explicit mathematical
design nor by setting up an environment in which an AI could evolve
spontaneously.
- Abstract(参考訳): 名詞の"artificial intelligence"(ai)が作られたため、人間が技術を使って知性を作り出すことができるかどうかが議論されている。
我々はこの問題に熱力学と数学の観点から新たな光を当てた。
まず、AIの担い手になり得るエージェント(デバイス)が何であるかを定義します。
そして、Hutterらによって提案され、まだAIコミュニティによって受け入れられている「知性」の主流の定義は、昆虫に知性を割り当てる際に関係するものを捉えるには弱すぎることを示す。
次に、ロドニー・ブルックスによって提案された基本的な(節足動物)知能の非常に有用な定義を要約し、この定義によって知能の担い手となるためにAIエージェントが持つべき特性を特定する。
最後に、そのようなエージェント、すなわち数学と物理学の創出に必要な規律の観点から、これらの性質は暗黙的でも明示的でもない数学的設計でも、AIが自然に進化できる環境を設定することでも実現可能であることを示す。
関連論文リスト
- On the consistent reasoning paradox of intelligence and optimal trust in AI: The power of 'I don't know' [79.69412622010249]
一貫性推論(Consistent reasoning)は、人間の知性の中心にある、同等のタスクを扱う能力である。
CRPは、一貫性のある推論は誤認を意味する、と論じている。
論文 参考訳(メタデータ) (2024-08-05T10:06:53Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - AI-as-exploration: Navigating intelligence space [0.05657375260432172]
私は、AIが果たさなければならない、無視されるが中心的な科学的な役割の輪郭を明確に表現します。
AI-as-explorationの基本的な推力は、知性の候補構築ブロックを明らかにするシステムの作成と研究である。
論文 参考訳(メタデータ) (2024-01-15T21:06:20Z) - On a Functional Definition of Intelligence [0.0]
合意されたインテリジェンスの定義がなければ、"このシステムはインテリジェントか?
知性(intelligence)とは、哲学、心理学、認知科学の分野である。
我々は、その知性が実際に達成される方法とは異なる、純粋に機能的でブラックボックスな知性の定義について論じる。
論文 参考訳(メタデータ) (2023-12-15T05:46:49Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Do Artificial Intelligence Systems Understand? [0.0]
提示された「知的な」振る舞いを説明するために、機械に対する理解を説明する必要はない。
タスク解決ツールとしてのインテリジェンスに対する単なる構文的・機械的アプローチは、表示可能な操作範囲を正当化するのに十分である。
論文 参考訳(メタデータ) (2022-07-22T13:57:02Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
興味深い仮説は、人間と動物の知性はいくつかの原則によって説明できるということである。
この研究は、主に高いレベルとシーケンシャルな意識的処理に関心のある人を中心に、より大きなリストを考察する。
これらの特定の原則を明確にする目的は、人間の能力から恩恵を受けるAIシステムを構築するのに役立つ可能性があることである。
論文 参考訳(メタデータ) (2020-11-30T18:29:25Z) - Computing Machinery and Knowledge [0.0]
論文は、AIエージェントが、AIにおける現在の最先端技術と、AI開発が超知能AIエージェントの観点でもたらすものの両方から、これを知り、検証することが可能である、と論じている。
論文 参考訳(メタデータ) (2020-10-31T09:27:53Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Is Intelligence Artificial? [0.0]
本稿では,自然界,次に人工知能に適用可能な統一的な定義を提案する。
コルモゴロフの複素性理論に基づく計量が示唆され、エントロピーに関する測度が導かれる。
承認されたAIテストのバージョンは、後に 'acid test' として提示され、フリー思考プログラムが達成しようとするものかもしれない。
論文 参考訳(メタデータ) (2014-03-05T11:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。