Creation of nitrogen-vacancy centers in chemical vapor deposition
diamond for sensing applications
- URL: http://arxiv.org/abs/2111.07981v1
- Date: Mon, 15 Nov 2021 18:47:08 GMT
- Title: Creation of nitrogen-vacancy centers in chemical vapor deposition
diamond for sensing applications
- Authors: T. Luo, L. Lindner, J. Langer, V. Cimalla, F. Hahl, C. Schreyvogel, S.
Onoda, S. Ishii, T. Ohshima, D.Wang, D. A. Simpson, B. C. Johnson, M.
Capelli, R. Blinder, J. Jeske
- Abstract summary: The nitrogen-vacancy center in diamond is a promising quantum system for magnetometry applications.
Key material requirements for NV ensembles are a high NV$-$ concentration, a long spin coherence time and a stable charge state.
This study shows a pathway to engineer properties of NV-doped CVD diamonds for improved sensitivity.
- Score: 0.22723215141187195
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The nitrogen-vacancy (NV) center in diamond is a promising quantum system for
magnetometry applications exhibiting optical readout of minute energy shifts in
its spin sub-levels. Key material requirements for NV ensembles are a high
NV$^-$ concentration, a long spin coherence time and a stable charge state.
However, these are interdependent and can be difficult to optimize during
diamond growth and subsequent NV creation. In this work, we systematically
investigate the NV center formation and properties in chemical vapor deposition
(CVD) diamond. The nitrogen flow during growth is varied by over 4 orders of
magnitude, resulting in a broad range of single substitutional nitrogen
concentrations of 0.2-20 parts per million. For a fixed nitrogen concentration,
we optimize electron-irradiation fluences with two different accelerated
electron energies, and we study defect formation via optical characterizations.
We discuss a general approach to determine the optimal irradiation conditions,
for which an enhanced NV concentration and an optimum of NV charge states can
both be satisfied. We achieve spin-spin coherence times T$_2$ ranging from 45.5
to 549 $\mu$s for CVD diamonds containing 168 to 1 parts per billion NV$^-$
centers, respectively. This study shows a pathway to engineer properties of
NV-doped CVD diamonds for improved sensitivity.
Related papers
- Optically Coherent Nitrogen-Vacancy Centers in HPHT Treated Diamonds [6.576597801995822]
nitrogen-vacancy (NV) center in diamond has attracted much attention in the fields of quantum sensing, quantum simulation, and quantum networks.
In this work, we demonstrate a non-destructive method to fabricate optically coherent NV centers.
arXiv Detail & Related papers (2024-09-26T00:29:34Z) - Blueprint for NV center ensemble based magnetometer: precise diamond sensor material characterization [3.568187998042966]
High sensitivity in NV-based magnetic sensing requires a diamond sample with a high density of NV centers and a long electron spin dephasing time.
We propose a systematic measurement method for determining the electron spin dephasing time of NV center ensembles.
arXiv Detail & Related papers (2024-08-26T14:46:01Z) - Detecting nitrogen-vacancy-hydrogen centers on the nanoscale using
nitrogen-vacancy centers in diamond [0.0]
nitrogen-vacancy-hydrogen complex (NVH) outnumbers the nitrogen vacancy (NV) defect by at least one order of magnitude creating a dense spin bath.
Monitoring and controlling the spin bath is essential to produce and understand engineered diamond material with high NV concentrations for quantum applications.
arXiv Detail & Related papers (2023-11-30T15:30:36Z) - Mitigation of Nitrogen Vacancy Ionization from Material Integration for
Quantum Sensing [0.0]
The nitrogen-vacancy (NV) color center in diamond has demonstrated great promise in a wide range of quantum sensing.
The insulating layer of alumina between the metal and diamond provide improved photoluminescence and higher sensitivity in all modes of sensing.
arXiv Detail & Related papers (2023-04-13T03:10:53Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Tunable and Transferable Diamond Membranes for Integrated Quantum
Technologies [48.634695885442504]
nanoscale-thick uniform diamond membranes are synthesized via "smart-cut" and isotopically (12C) purified overgrowth.
Within 110 nm thick membranes, individual germanium-vacancy (GeV-) centers exhibit stable photoluminescence at 5.4 K and average optical transition linewidths as low as 125 MHz.
This platform enables the straightforward integration of diamond membranes that host coherent color centers into quantum technologies.
arXiv Detail & Related papers (2021-09-23T17:18:39Z) - Impact of surface and laser-induced noise on the spectral stability of
implanted nitrogen-vacancy centers in diamond [0.0]
quantum network technologies utilize the nitrogen vacancy center in diamond.
We create single NV centers by $15$N ion implantation and high-temperature vacuum annealing.
Long-term stability of the NV$-$ charge state and emission frequency is demonstrated.
arXiv Detail & Related papers (2021-05-20T03:03:51Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.