論文の概要: Nonprehensile Riemannian Motion Predictive Control
- arxiv url: http://arxiv.org/abs/2111.07986v1
- Date: Mon, 15 Nov 2021 18:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-16 17:27:40.658311
- Title: Nonprehensile Riemannian Motion Predictive Control
- Title(参考訳): 非従属リーマン運動予測制御
- Authors: Hamid Izadinia, Byron Boots, Steven M. Seitz
- Abstract要約: 本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
- 参考スコア(独自算出の注目度): 57.295751294224765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonprehensile manipulation involves long horizon underactuated object
interactions and physical contact with different objects that can inherently
introduce a high degree of uncertainty. In this work, we introduce a novel
Real-to-Sim reward analysis technique, called Riemannian Motion Predictive
Control (RMPC), to reliably imagine and predict the outcome of taking possible
actions for a real robotic platform. Our proposed RMPC benefits from Riemannian
motion policy and second order dynamic model to compute the acceleration
command and control the robot at every location on the surface. Our approach
creates a 3D object-level recomposed model of the real scene where we can
simulate the effect of different trajectories. We produce a closed-loop
controller to reactively push objects in a continuous action space. We evaluate
the performance of our RMPC approach by conducting experiments on a real robot
platform as well as simulation and compare against several baselines. We
observe that RMPC is robust in cluttered as well as occluded environments and
outperforms the baselines.
- Abstract(参考訳): 非包括的操作は、長い水平不動物体相互作用と、本質的に高い不確実性をもたらす可能性のある異なる物体との物理的接触を含む。
本研究では,リアル・ツー・シムの報酬分析技術であるRiemannian Motion Predictive Control (RMPC)を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
提案するrmpcは, リーマン運動ポリシーと2次動的モデルにより, 加速度指令を計算し, ロボットを表面上のあらゆる場所で制御できる。
提案手法は実シーンの3次元オブジェクトレベル再構成モデルを作成し,異なる軌道の効果をシミュレートする。
連続したアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成する。
我々は,実際のロボットプラットフォーム上で実験を行い,シミュレーションを行い,複数のベースラインと比較することで,rmpc手法の性能を評価する。
rmpcは乱雑な環境と混ざり合った環境において頑健であり、ベースラインよりも優れています。
関連論文リスト
- Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
そこで本研究では,テキスト内学習を用いてシミュレーション環境パラメータを動的に調整する手法を提案する。
オブジェクトスクーピングとテーブルエアホッケーという2つのタスクにまたがるアプローチを検証する。
提案手法は,ロボットの動的現実シナリオへの展開を推し進め,効率的かつスムーズなシステム識別を実現する。
論文 参考訳(メタデータ) (2024-10-27T07:13:38Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
本稿では,Articulated Objects (RPMArt) のロバスト知覚と操作のためのフレームワークを提案する。
RPMArtは、調音パラメータを推定し、雑音の多い点雲から調音部分を操作することを学習する。
我々は,シミュレート・トゥ・リアル・トランスファーの能力を高めるための調音認識型分類手法を提案する。
論文 参考訳(メタデータ) (2024-03-24T05:55:39Z) - Learning to navigate efficiently and precisely in real environments [14.52507964172957]
Embodied AIの文献は、HabitatやAI-Thorといったシミュレータで訓練されたエンドツーエンドエージェントに焦点を当てている。
本研究では,sim2realのギャップを最小限に抑えたシミュレーションにおけるエージェントのエンドツーエンドトレーニングについて検討する。
論文 参考訳(メタデータ) (2024-01-25T17:50:05Z) - Towards Transferring Tactile-based Continuous Force Control Policies
from Simulation to Robot [19.789369416528604]
グリップフォースコントロールは、物体に作用する力の量を制限することによって、物体を安全に操作することを目的としている。
以前の作品では、手動制御器、モデルベースのアプローチ、あるいはsim-to-realトランスファーを示さなかった。
シミュレーションで訓練されたモデルなしの深層強化学習手法を提案し,さらに微調整を行わずにロボットに移行した。
論文 参考訳(メタデータ) (2023-11-13T11:29:06Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
シミュレーションにおけるビジュモータポリシーの学習は、現実世界よりも安全で安価である。
しかし、シミュレーションデータと実データとの相違により、シミュレータ訓練されたポリシーは実際のロボットに転送されると失敗することが多い。
視覚的なsim-to-real領域ギャップを埋める一般的なアプローチは、ドメインランダム化(DR)である。
論文 参考訳(メタデータ) (2023-07-28T05:47:24Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
本研究では,BALLUロボットのシステム識別による制御ポリシのロバストなシミュレートを実演する。
標準的な教師あり学習の定式化に頼るのではなく、深層強化学習を利用して外部力政策を訓練する。
シミュレーショントラジェクトリと実世界のトラジェクトリを比較することで,改良されたシミュレーション忠実度を解析する。
論文 参考訳(メタデータ) (2023-03-16T18:49:05Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
我々は人型ロボットの手で頑健な操作を行える政策を訓練する。
本研究は,各種ハードウェアおよびシミュレータのデクスタラス操作におけるsim-to-real転送の可能性を再確認する。
論文 参考訳(メタデータ) (2022-10-25T01:51:36Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。