Sparse Graph Learning Under Laplacian-Related Constraints
- URL: http://arxiv.org/abs/2111.08161v1
- Date: Tue, 16 Nov 2021 00:50:36 GMT
- Title: Sparse Graph Learning Under Laplacian-Related Constraints
- Authors: Jitendra K. Tugnait
- Abstract summary: We focus on graph Laplacian-related constraints on the sparse precision matrix that encodes conditional dependence between random variables.
We investigate modifications to widely used penalized log-likelihood approaches to enforce total positivity but not the Laplacian structure.
An alternating direction method of multipliers (ADMM) algorithm is presented and analyzed for constrained optimization.
- Score: 23.503820266772504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of learning a sparse undirected graph underlying a
given set of multivariate data. We focus on graph Laplacian-related constraints
on the sparse precision matrix that encodes conditional dependence between the
random variables associated with the graph nodes. Under these constraints the
off-diagonal elements of the precision matrix are non-positive (total
positivity), and the precision matrix may not be full-rank. We investigate
modifications to widely used penalized log-likelihood approaches to enforce
total positivity but not the Laplacian structure. The graph Laplacian can then
be extracted from the off-diagonal precision matrix. An alternating direction
method of multipliers (ADMM) algorithm is presented and analyzed for
constrained optimization under Laplacian-related constraints and lasso as well
as adaptive lasso penalties. Numerical results based on synthetic data show
that the proposed constrained adaptive lasso approach significantly outperforms
existing Laplacian-based approaches. We also evaluate our approach on real
financial data.
Related papers
- A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
We propose a framework for the analysis of the low-rank approximation error in Frobenius norm for centered and non-standard matrices.
Under minimal assumptions, we derive accurate bounds in expectation and probability.
Our bounds have clear interpretations that enable us to derive properties and motivate practical choices.
arXiv Detail & Related papers (2024-05-08T04:51:56Z) - Network Topology Inference with Sparsity and Laplacian Constraints [18.447094648361453]
We tackle the network topology by utilizing Laplacian constrained Gaussian graphical models.
We show that an efficient projection algorithm is developed to solve the resulting problem.
arXiv Detail & Related papers (2023-09-02T15:06:30Z) - Efficient Graph Laplacian Estimation by Proximal Newton [12.05527862797306]
A graph learning problem can be formulated as a maximum likelihood estimation (MLE) of the precision matrix.
We develop a second-order approach to obtain an efficient solver utilizing several algorithmic features.
arXiv Detail & Related papers (2023-02-13T15:13:22Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained
Graphical Models? [13.572602792770288]
We consider the problem of learning a graph under the Laplacian constrained Gaussian graphical models.
We show that a large regularization parameter will surprisingly lead to a complete graph, i.e., every edge connected by an edge.
arXiv Detail & Related papers (2020-06-26T12:06:10Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.