Efficient Graph Laplacian Estimation by Proximal Newton
- URL: http://arxiv.org/abs/2302.06434v3
- Date: Fri, 12 Apr 2024 06:38:32 GMT
- Title: Efficient Graph Laplacian Estimation by Proximal Newton
- Authors: Yakov Medvedovsky, Eran Treister, Tirza Routtenberg,
- Abstract summary: A graph learning problem can be formulated as a maximum likelihood estimation (MLE) of the precision matrix.
We develop a second-order approach to obtain an efficient solver utilizing several algorithmic features.
- Score: 12.05527862797306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Laplacian-constrained Gaussian Markov Random Field (LGMRF) is a common multivariate statistical model for learning a weighted sparse dependency graph from given data. This graph learning problem can be formulated as a maximum likelihood estimation (MLE) of the precision matrix, subject to Laplacian structural constraints, with a sparsity-inducing penalty term. This paper aims to solve this learning problem accurately and efficiently. First, since the commonly used $\ell_1$-norm penalty is inappropriate in this setting and may lead to a complete graph, we employ the nonconvex minimax concave penalty (MCP), which promotes sparse solutions with lower estimation bias. Second, as opposed to existing first-order methods for this problem, we develop a second-order proximal Newton approach to obtain an efficient solver, utilizing several algorithmic features, such as using Conjugate Gradients, preconditioning, and splitting to active/free sets. Numerical experiments demonstrate the advantages of the proposed method in terms of both computational complexity and graph learning accuracy compared to existing methods.
Related papers
- Maximum a Posteriori Inference for Factor Graphs via Benders' Decomposition [0.38233569758620056]
We present a method for maximum a-posteriori inference in general Bayesian factor models.
We derive MAP estimation algorithms for the Bayesian Gaussian mixture model and latent Dirichlet allocation.
arXiv Detail & Related papers (2024-10-24T19:57:56Z) - DC Algorithm for Estimation of Sparse Gaussian Graphical Models [3.291862617649511]
We develop a synthetic algorithm for sparse estimation of graphical models.
We show that our method is particularly advantageous in terms of results that are equivalent to or better than existing methods.
arXiv Detail & Related papers (2024-08-08T04:05:50Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
Update [88.73437209862891]
In second-order optimization, a potential bottleneck can be computing the Hessian matrix of the optimized function at every iteration.
We show that the Gaussian sketching matrix can be drastically sparsified, significantly reducing the computational cost of sketching.
We prove that Newton-LESS enjoys nearly the same problem-independent local convergence rate as Gaussian embeddings.
arXiv Detail & Related papers (2021-07-15T17:33:05Z) - Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained
Graphical Models? [13.572602792770288]
We consider the problem of learning a graph under the Laplacian constrained Gaussian graphical models.
We show that a large regularization parameter will surprisingly lead to a complete graph, i.e., every edge connected by an edge.
arXiv Detail & Related papers (2020-06-26T12:06:10Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Efficient algorithms for multivariate shape-constrained convex
regression problems [9.281671380673306]
We prove that the least squares estimator is computable via solving a constrained convex programming (QP) problem with $(n+1)d$ variables and at least $n(n-1)$ linear inequality constraints.
For solving the generally very large-scale convex QP, we design two efficient algorithms, one is the symmetric Gauss-Seidel based alternating direction method of multipliers (tt sGS-ADMM), and the other is the proximal augmented Lagrangian method (tt pALM) with the subproblems solved by the semismooth Newton method (t
arXiv Detail & Related papers (2020-02-26T11:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.