論文の概要: A Survey on Neural-symbolic Learning Systems
- arxiv url: http://arxiv.org/abs/2111.08164v3
- Date: Sun, 25 Jun 2023 01:20:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 01:48:37.607287
- Title: A Survey on Neural-symbolic Learning Systems
- Title(参考訳): ニューラルシンボリック学習システムに関する調査研究
- Authors: Dongran Yu, Bo Yang, Dayou Liu, Hui Wang and Shirui Pan
- Abstract要約: 本研究の目的は,ニューラルシンボリック学習システムの進歩を4つの異なる視点から調査することである。
この研究は、研究者が包括的で総合的な概要を提供するために、この新たな分野を前進させることを目的としている。
- 参考スコア(独自算出の注目度): 33.01131861279175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, neural systems have demonstrated highly effective learning
ability and superior perception intelligence. However, they have been found to
lack effective reasoning and cognitive ability. On the other hand, symbolic
systems exhibit exceptional cognitive intelligence but suffer from poor
learning capabilities when compared to neural systems. Recognizing the
advantages and disadvantages of both methodologies, an ideal solution emerges:
combining neural systems and symbolic systems to create neural-symbolic
learning systems that possess powerful perception and cognition. The purpose of
this paper is to survey the advancements in neural-symbolic learning systems
from four distinct perspectives: challenges, methods, applications, and future
directions. By doing so, this research aims to propel this emerging field
forward, offering researchers a comprehensive and holistic overview. This
overview will not only highlight the current state-of-the-art but also identify
promising avenues for future research.
- Abstract(参考訳): 近年,神経系は高い学習能力と優れた知覚知性を示している。
しかし、効果的な推論と認知能力が欠如していることが判明した。
一方、シンボリックシステムは例外的な認知知能を示すが、ニューラルネットワークと比較して学習能力に乏しい。
両方の方法論の利点と欠点を認識した理想的な解決策は、ニューラルネットワークとシンボリックシステムを組み合わせて、強力な知覚と認知を持つニューラルシンボリック学習システムを作成することである。
本研究の目的は, 課題, 方法, 応用, 今後の方向性の4つの異なる視点から, ニューラルシンボリック学習システムの進歩を調査することである。
この研究は、この新興分野を前進させ、研究者に包括的かつ総合的な概要を提供する。
この概要は、現在の最先端だけでなく、将来的な研究の道筋も明らかにする。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - A Review of Findings from Neuroscience and Cognitive Psychology as
Possible Inspiration for the Path to Artificial General Intelligence [0.0]
本論は,神経科学と認知心理学の手法を検討することによって,人工知能の探求に貢献することを目的とする。
深層学習モデルによって達成された印象的な進歩にもかかわらず、抽象的推論と因果的理解にはまだ欠点がある。
論文 参考訳(メタデータ) (2024-01-03T09:46:36Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Non-equilibrium physics: from spin glasses to machine and neural
learning [0.0]
障害のある多体系は様々なスケールで幅広い創発現象を示す。
我々は、統計物理学を通して、乱れたシステムにおけるそのような突発的な知性を特徴付けることを目指している。
知的システムを設計するための指針となる学習メカニズムと物理力学の関係を明らかにする。
論文 参考訳(メタデータ) (2023-08-03T04:56:47Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
人工ニューラルネットワークにおける脳にインスパイアされた学習表現について概説する。
これらのネットワークの能力を高めるために, シナプス可塑性などの生物学的に妥当な機構の統合について検討する。
論文 参考訳(メタデータ) (2023-05-18T18:34:29Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
ニューラルシンボリック・コンピューティング(NeSy)は、人工知能(AI)の活発な研究領域である。
NeSyは、ニューラルネットワークにおける記号表現の推論と解釈可能性の利点と堅牢な学習の整合性を示す。
論文 参考訳(メタデータ) (2022-10-28T04:38:10Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
AIの信頼、安全性、解釈可能性、説明責任に関する懸念は、影響力のある思想家によって提起された。
多くは、知識表現と推論を深層学習に統合する必要性を認識している。
ニューラル・シンボリック・コンピューティングは、推論と説明可能性を備えた堅牢な学習をニューラルネットワークで組み合わせようとする研究の活発な領域である。
論文 参考訳(メタデータ) (2020-12-10T18:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。