論文の概要: Deep Diffusion Models for Robust Channel Estimation
- arxiv url: http://arxiv.org/abs/2111.08177v1
- Date: Tue, 16 Nov 2021 01:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-18 03:58:56.750993
- Title: Deep Diffusion Models for Robust Channel Estimation
- Title(参考訳): ロバストチャネル推定のための深部拡散モデル
- Authors: Marius Arvinte and Jonathan I Tamir
- Abstract要約: 深部拡散モデルを用いたマルチインプット・マルチアウトプット(MIMO)チャネル推定のための新しい手法を提案する。
提案手法は,高次元空間の任意の点における無線チャネルのログ状勾配を推定するために訓練されたディープニューラルネットワークを用いている。
- 参考スコア(独自算出の注目度): 1.7259824817932292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Channel estimation is a critical task in digital communications that greatly
impacts end-to-end system performance. In this work, we introduce a novel
approach for multiple-input multiple-output (MIMO) channel estimation using
deep diffusion models. Our method uses a deep neural network that is trained to
estimate the gradient of the log-likelihood of wireless channels at any point
in high-dimensional space, and leverages this model to solve channel estimation
via posterior sampling. We train a deep diffusion model on channel realizations
from the CDL-D model for two antenna spacings and show that the approach leads
to competitive in- and out-of-distribution performance when compared to
generative adversarial network (GAN) and compressed sensing (CS) methods. When
tested on CDL-C channels which are never seen during training or fine-tuned on,
our approach leads to end-to-end coded performance gains of up to $3$ dB
compared to CS methods and losses of only $0.5$ dB compared to ideal channel
knowledge. To encourage open and reproducible research, our source code is
available at https://github.com/utcsilab/diffusion-channels .
- Abstract(参考訳): チャネル推定は、エンドツーエンドのシステム性能に大きな影響を及ぼすデジタル通信において重要なタスクである。
本研究では,深層拡散モデルを用いた多入力多重出力(mimo)チャネル推定のための新しい手法を提案する。
提案手法は,高次元空間の任意の点における無線チャネルの対数線勾配を推定するために訓練されたディープニューラルネットワークを用い,このモデルを用いて後部サンプリングによるチャネル推定を解く。
2つのアンテナ間隔でCDL-Dモデルからチャネル実現に関する深い拡散モデルを訓練し、生成的対向ネットワーク(GAN)や圧縮センシング(CS)手法と比較して、そのアプローチが競合する内外分布性能をもたらすことを示す。
トレーニング中や微調整中に見られることのないCDL-Cチャネルでテストすると、CS手法と比較してエンドツーエンドのコード化性能は最大3ドル、理想的なチャネル知識と比較して0.5ドルという損失しか得られない。
オープンで再現可能な研究を促進するために、ソースコードはhttps://github.com/utcsilab/diffusion-channels.com/で入手できる。
関連論文リスト
- Diffusion Models for Accurate Channel Distribution Generation [19.80498913496519]
強力な生成モデルはチャネル分布を正確に学習することができる。
これにより、チャネルの物理的測定の繰り返しコストを削減できる。
結果として得られる差別化チャネルモデルは、勾配ベースの最適化を可能にすることにより、ニューラルエンコーダのトレーニングをサポートする。
論文 参考訳(メタデータ) (2023-09-19T10:35:54Z) - Generative Diffusion Models for Radio Wireless Channel Modelling and
Sampling [11.09458914721516]
チャネルモデリングの複雑さと高品質な無線チャネルデータの収集コストが大きな課題となっている。
本稿では,拡散モデルに基づくチャネルサンプリング手法を提案する。
モード崩壊や不安定なトレーニングに苦しむ既存のGANベースのアプローチと比較して,拡散型アプローチは多種多様な高忠実度サンプルを合成し,生成することを示した。
論文 参考訳(メタデータ) (2023-08-10T13:49:26Z) - Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation [35.62977046569772]
我々は,ノイズを受信したパイロット測度を利用して深層生成モデルの訓練を行う,教師なしオーバー・ザ・エア(OTA)アルゴリズムを開発した。
次に、逆問題として、限られた数のパイロット測定値からチャネル推定を定式化する。
提案するフレームワークは,実雑音のパイロット測定を用いてオンライントレーニングを行うことが可能である。
論文 参考訳(メタデータ) (2022-05-25T02:26:34Z) - MIMO Channel Estimation using Score-Based Generative Models [1.6752182911522517]
本稿では,ディープスコアに基づく生成モデルを用いたチャネル推定手法を提案する。
これらのモデルは、対数-主分布の勾配を推定するために訓練され、観測された信号の測定から推定を反復的に洗練するために使用することができる。
論文 参考訳(メタデータ) (2022-04-14T17:23:58Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
本稿では,CATRO (Class-Aware Trace Ratio Optimization) を用いた新しいチャネルプルーニング手法を提案する。
CATROは、他の最先端チャネルプルーニングアルゴリズムと同等の精度で、同様のコストまたは低コストで高い精度を達成できることを示す。
CATROは、クラス認識の特性のため、様々な分類サブタスクに適応的に効率の良いネットワークを創り出すのに適している。
論文 参考訳(メタデータ) (2021-10-21T06:26:31Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
無人航空機(UAV)無線ネットワークにおけるミリ波(mmWave)通信のための,データ駆動型空対地(A2G)チャネル推定手法を提案する。
実効的なチャネル推定手法を開発し、各UAVは、各ビームフォーミング方向に沿って条件付き生成対向ネットワーク(CGAN)を介してスタンドアロンチャネルモデルを訓練することができる。
分散CGANアーキテクチャに基づく協調的なフレームワークを開発し、各UAVがmmWaveチャネルの分布を協調的に学習できるようにする。
論文 参考訳(メタデータ) (2021-02-02T20:56:46Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
大規模なマルチインプット多重出力(MIMO)システムでは、多数のアンテナが正確なチャネル状態情報を取得する上で大きな課題となる。
ニューラルネットワーク(NN)を用いて、アップリンクとダウンリンクチャネルデータセット間の固有の接続を捕捉し、アップリンクチャネル状態情報のサブセットからダウンリンクチャネルを外挿する。
アンテナサブセット選択問題について検討し、最高のチャネル外挿を実現し、NNのデータサイズを小さくする。
論文 参考訳(メタデータ) (2020-09-03T13:38:52Z) - Operation-Aware Soft Channel Pruning using Differentiable Masks [51.04085547997066]
本稿では,データ駆動型アルゴリズムを提案する。このアルゴリズムは,操作特性を利用して,ディープニューラルネットワークを異なる方法で圧縮する。
我々は大規模な実験を行い、出力ネットワークの精度で優れた性能を達成する。
論文 参考訳(メタデータ) (2020-07-08T07:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。