SStaGCN: Simplified stacking based graph convolutional networks
- URL: http://arxiv.org/abs/2111.08228v1
- Date: Tue, 16 Nov 2021 05:00:08 GMT
- Title: SStaGCN: Simplified stacking based graph convolutional networks
- Authors: Jia Cai, Zhilong Xiong, Shaogao Lv
- Abstract summary: Graph convolutional network (GCN) is a powerful model studied broadly in various graph structural data learning tasks.
We propose a novel GCN called SStaGCN (Simplified stacking based GCN) by utilizing the ideas of stacking and aggregation.
We show that SStaGCN can efficiently mitigate the over-smoothing problem of GCN.
- Score: 2.556756699768804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional network (GCN) is a powerful model studied broadly in
various graph structural data learning tasks. However, to mitigate the
over-smoothing phenomenon, and deal with heterogeneous graph structural data,
the design of GCN model remains a crucial issue to be investigated. In this
paper, we propose a novel GCN called SStaGCN (Simplified stacking based GCN) by
utilizing the ideas of stacking and aggregation, which is an adaptive general
framework for tackling heterogeneous graph data. Specifically, we first use the
base models of stacking to extract the node features of a graph. Subsequently,
aggregation methods such as mean, attention and voting techniques are employed
to further enhance the ability of node features extraction. Thereafter, the
node features are considered as inputs and fed into vanilla GCN model.
Furthermore, theoretical generalization bound analysis of the proposed model is
explicitly given. Extensive experiments on $3$ public citation networks and
another $3$ heterogeneous tabular data demonstrate the effectiveness and
efficiency of the proposed approach over state-of-the-art GCNs. Notably, the
proposed SStaGCN can efficiently mitigate the over-smoothing problem of GCN.
Related papers
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Multi-scale Graph Convolutional Networks with Self-Attention [2.66512000865131]
Graph convolutional networks (GCNs) have achieved remarkable learning ability for dealing with various graph structural data.
Over-smoothing phenomenon as a crucial issue of GCNs remains to be solved and investigated.
We propose two novel multi-scale GCN frameworks by incorporating self-attention mechanism and multi-scale information into the design of GCNs.
arXiv Detail & Related papers (2021-12-04T04:41:24Z) - SPAGAN: Shortest Path Graph Attention Network [187.75441278910708]
Graph convolutional networks (GCN) have recently demonstrated their potential in analyzing non-grid structure data that can be represented as graphs.
We propose a novel GCN model, which we term as Shortest Path Graph Attention Network (SPAGAN)
arXiv Detail & Related papers (2021-01-10T03:18:34Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - Simple and Deep Graph Convolutional Networks [63.76221532439285]
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data.
Despite their success, most of the current GCN models are shallow, due to the em over-smoothing problem.
We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques.
arXiv Detail & Related papers (2020-07-04T16:18:06Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features.
Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions.
The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs.
arXiv Detail & Related papers (2020-03-18T18:03:08Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network (GCN) is an emerging technique that performs learning and reasoning on graph data.
We argue that existing designs of GCN forgo modeling cross features, making GCN less effective for tasks or data where cross features are important.
We design a new operator named Cross-feature Graph Convolution, which explicitly models the arbitrary-order cross features with complexity linear to feature dimension and order size.
arXiv Detail & Related papers (2020-03-05T13:05:27Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
We study the relationship between LPA and GCN in terms of two aspects: feature/label smoothing and feature/label influence.
Based on our theoretical analysis, we propose an end-to-end model that unifies GCN and LPA for node classification.
Our model can also be seen as learning attention weights based on node labels, which is more task-oriented than existing feature-based attention models.
arXiv Detail & Related papers (2020-02-17T03:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.