Knowledge Embedding Based Graph Convolutional Network
- URL: http://arxiv.org/abs/2006.07331v2
- Date: Fri, 23 Apr 2021 15:54:15 GMT
- Title: Knowledge Embedding Based Graph Convolutional Network
- Authors: Donghan Yu, Yiming Yang, Ruohong Zhang, Yuexin Wu
- Abstract summary: This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
- Score: 35.35776808660919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, a considerable literature has grown up around the theme of Graph
Convolutional Network (GCN). How to effectively leverage the rich structural
information in complex graphs, such as knowledge graphs with heterogeneous
types of entities and relations, is a primary open challenge in the field. Most
GCN methods are either restricted to graphs with a homogeneous type of edges
(e.g., citation links only), or focusing on representation learning for nodes
only instead of jointly propagating and updating the embeddings of both nodes
and edges for target-driven objectives. This paper addresses these limitations
by proposing a novel framework, namely the Knowledge Embedding based Graph
Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based
belief propagation and the strengths of advanced knowledge embedding (a.k.a.
knowledge graph embedding) methods, and goes beyond. Our theoretical analysis
shows that KE-GCN offers an elegant unification of several well-known GCN
methods as specific cases, with a new perspective of graph convolution.
Experimental results on benchmark datasets show the advantageous performance of
KE-GCN over strong baseline methods in the tasks of knowledge graph alignment
and entity classification.
Related papers
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning.
We propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN)
arXiv Detail & Related papers (2024-05-17T08:50:00Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
Graph contrastive learning (GCL) has emerged as a promising self-supervised approach for learning node representations.
We show that representations obtained by GCL methods are already fairer to degree bias than those learned by GCN.
We devise a novel graph augmentation method, called GRAph contrastive learning for DEgree bias (GRADE), which applies different strategies to low- and high-degree nodes.
arXiv Detail & Related papers (2022-10-06T15:58:25Z) - Skeleton-based Hand-Gesture Recognition with Lightweight Graph
Convolutional Networks [14.924672048447338]
Graph convolutional networks (GCNs) aim at extending deep learning to arbitrary irregular domains, such as graphs.
We introduce a novel method that learns the topology of input graphs as a part of GCN design.
Experiments conducted on the challenging task of skeleton-based hand-gesture recognition show the high effectiveness of the learned GCNs.
arXiv Detail & Related papers (2021-04-09T09:06:53Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - K-Core based Temporal Graph Convolutional Network for Dynamic Graphs [19.237377882738063]
We propose a novel k-core based temporal graph convolutional network, the CTGCN, to learn node representations for dynamic graphs.
In contrast to previous dynamic graph embedding methods, CTGCN can preserve both local connective proximity and global structural similarity.
Experimental results on 7 real-world graphs demonstrate that the CTGCN outperforms existing state-of-the-art graph embedding methods in several tasks.
arXiv Detail & Related papers (2020-03-22T14:15:27Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network (GCN) is an emerging technique that performs learning and reasoning on graph data.
We argue that existing designs of GCN forgo modeling cross features, making GCN less effective for tasks or data where cross features are important.
We design a new operator named Cross-feature Graph Convolution, which explicitly models the arbitrary-order cross features with complexity linear to feature dimension and order size.
arXiv Detail & Related papers (2020-03-05T13:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.