論文の概要: Reducing the Long Tail Losses in Scientific Emulations with Active
Learning
- arxiv url: http://arxiv.org/abs/2111.08498v1
- Date: Mon, 15 Nov 2021 09:02:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-17 14:55:23.570459
- Title: Reducing the Long Tail Losses in Scientific Emulations with Active
Learning
- Title(参考訳): 能動的学習による科学的エミュレーションにおけるロングテールロスの低減
- Authors: Yi Heng Lim, Muhammad Firmansyah Kasim
- Abstract要約: 本研究では、コアセット選択と呼ばれるアクティブな学習手法を利用して、事前定義された予算に従ってデータを積極的に選択し、トレーニング用にラベル付けした。
本研究では、天体物理学における銀河ハロ占有分布とプラズマ物理学におけるX線放射分光の2つのケーススタディについて検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep-learning-based models are increasingly used to emulate scientific
simulations to accelerate scientific research. However, accurate, supervised
deep learning models require huge amount of labelled data, and that often
becomes the bottleneck in employing neural networks. In this work, we leveraged
an active learning approach called core-set selection to actively select data,
per a pre-defined budget, to be labelled for training. To further improve the
model performance and reduce the training costs, we also warm started the
training using a shrink-and-perturb trick. We tested on two case studies in
different fields, namely galaxy halo occupation distribution modelling in
astrophysics and x-ray emission spectroscopy in plasma physics, and the results
are promising: we achieved competitive overall performance compared to using a
random sampling baseline, and more importantly, successfully reduced the larger
absolute losses, i.e. the long tail in the loss distribution, at virtually no
overhead costs.
- Abstract(参考訳): ディープラーニングベースのモデルは、科学研究を加速するために科学シミュレーションをエミュレートするためにますます使われています。
しかし、正確で教師付きディープラーニングモデルには大量のラベル付きデータが必要であり、ニューラルネットワークを採用する際のボトルネックになることが多い。
本研究では,コアセット選択と呼ばれるアクティブな学習手法を用いて,事前定義された予算に基づいてデータを積極的に選択し,トレーニング用にラベル付けする。
モデルのパフォーマンスをさらに向上し、トレーニングコストを削減すべく、縮小・摂動トリックを用いたトレーニングも開始しました。
天体物理学およびプラズマ物理学におけるX線放射分光をモデル化した銀河ハロー占有分布の2つのケーススタディを検証した結果, ランダムサンプリングベースラインを用いた場合と比較して総合的な性能が向上し, さらに重要なことは, 損失分布の長い尾が, ほぼオーバーヘッドコストで, より大きな絶対損失を低減できたことだ。
関連論文リスト
- Optimizing Dense Feed-Forward Neural Networks [0.0]
本稿では,プルーニングと移動学習に基づくフィードフォワードニューラルネットワークの構築手法を提案する。
提案手法では,パラメータ数を70%以上圧縮できる。
また、ニューラルネットワークをスクラッチからトレーニングしたモデルと元のモデルを比較し、トランスファー学習レベルを評価した。
論文 参考訳(メタデータ) (2023-12-16T23:23:16Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
ニューラルネットワークによるエネルギー最小化のためのGradual Optimization Learning Framework(GOLF)は、必要な追加データを大幅に削減する。
GOLFでトレーニングしたニューラルネットワークは,種々の薬物様分子のベンチマークにおいて,オラクルと同等に動作することを示す。
論文 参考訳(メタデータ) (2023-11-05T11:48:08Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
大規模空間問題に対する学習効率を向上させるために移動学習を用いる。
畳み込みニューラルネットワーク (CNN) は, 信号の小さな窓で訓練できるが, 性能劣化の少ない任意の大信号で評価できる。
論文 参考訳(メタデータ) (2023-06-14T01:24:42Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
量子化法における実データを用いたキャリブレーションの代用として合成データを用いた場合について検討する。
本稿では,StyleGAN2-ADAが生成したデータと事前学習したDiStyleGANを用いて定量化したモデルの性能と,実データを用いた量子化とフラクタル画像に基づく代替データ生成手法との比較を行った。
論文 参考訳(メタデータ) (2023-05-10T11:10:09Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Large Deviations for Accelerating Neural Networks Training [5.864710987890994]
LAD改良反復訓練(LIIT)は,大規模な逸脱原理を用いたANNのための新しい訓練手法である。
LIITアプローチでは、LAD異常スコアに基づくサンプリング戦略を用いて、MTS(Modified Training Sample)を生成し、反復的に更新する。
MTSサンプルは、各クラスにおける観察のほとんどを異常に含めることで、トレーニングデータをうまく表現するように設計されている。
論文 参考訳(メタデータ) (2023-03-02T04:14:05Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
ディープラーニングモデルのトレーニング効率と堅牢性を改善するためのアプローチについて検討する。
より情報的なトレーニングデータに基づく学習の優先順位付けは収束速度を高め、テストデータに対する一般化性能を向上させる。
トレーニングデータのサンプリングに対する冗長性を考慮した修正により、トレーニング速度が向上し、トレーニング信号の多様性を検出する効率的な方法が開発されていることを示す。
論文 参考訳(メタデータ) (2021-12-02T17:11:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。