論文の概要: Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation
- arxiv url: http://arxiv.org/abs/2111.08557v2
- Date: Wed, 17 Nov 2021 12:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-18 11:52:19.379299
- Title: Rethinking Keypoint Representations: Modeling Keypoints and Poses as
Objects for Multi-Person Human Pose Estimation
- Title(参考訳): キーポイント表現再考:多人数人格推定のためのキーポイントとポーズのモデル化
- Authors: William McNally, Kanav Vats, Alexander Wong, John McPhee
- Abstract要約: 本研究では,個々のキーポイントと空間的関連キーポイント(ポーズ)の集合を,密集した単一ステージアンカーベース検出フレームワーク内のオブジェクトとしてモデル化する,新しいヒートマップフリーなキーポイント推定手法を提案する。
実験では, KAPAOは従来手法よりもはるかに高速かつ高精度であり, 熱マップ後処理に悩まされていた。
我々の大規模モデルであるKAPAO-Lは、テスト時間拡張なしでMicrosoft COCO Keypoints検証セット上で70.6のAPを達成する。
- 参考スコア(独自算出の注目度): 79.78017059539526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In keypoint estimation tasks such as human pose estimation, heatmap-based
regression is the dominant approach despite possessing notable drawbacks:
heatmaps intrinsically suffer from quantization error and require excessive
computation to generate and post-process. Motivated to find a more efficient
solution, we propose a new heatmap-free keypoint estimation method in which
individual keypoints and sets of spatially related keypoints (i.e., poses) are
modeled as objects within a dense single-stage anchor-based detection
framework. Hence, we call our method KAPAO (pronounced "Ka-Pow!") for Keypoints
And Poses As Objects. We apply KAPAO to the problem of single-stage
multi-person human pose estimation by simultaneously detecting human pose
objects and keypoint objects and fusing the detections to exploit the strengths
of both object representations. In experiments, we observe that KAPAO is
significantly faster and more accurate than previous methods, which suffer
greatly from heatmap post-processing. Moreover, the accuracy-speed trade-off is
especially favourable in the practical setting when not using test-time
augmentation. Our large model, KAPAO-L, achieves an AP of 70.6 on the Microsoft
COCO Keypoints validation set without test-time augmentation while being 2.5x
faster than the next best single-stage model, whose accuracy is 4.0 AP less.
Furthermore, KAPAO excels in the presence of heavy occlusion. On the CrowdPose
test set, KAPAO-L achieves new state-of-the-art accuracy for a single-stage
method with an AP of 68.9.
- Abstract(参考訳): 人間のポーズ推定のようなキーポイント推定タスクでは、ヒートマップベースの回帰は顕著な欠点があるにもかかわらず支配的なアプローチである。
より効率的な解を求めるために,個々のキーポイントと空間関連キーポイント(つまりポーズ)のセットを,密集した単段アンカーに基づく検出フレームワーク内のオブジェクトとしてモデル化する,新しいヒートマップフリーキーポイント推定法を提案する。
したがって、キーポイントとポゼス・アズ・オブジェクトに対して、我々のメソッド KAPAO ("Ka-Pow!"と発音する) を呼ぶ。
本研究では,人間のポーズオブジェクトとキーポイントオブジェクトを同時に検出し,両方のオブジェクト表現の強みを生かして,カパオを単段多人数のポーズ推定問題に適用する。
実験では, KAPAOは従来手法よりもはるかに高速かつ高精度であり, 熱マップ後処理に悩まされていた。
さらに、テスト時間拡張を使用しない場合には、特に実用環境での精度・速度トレードオフが好ましい。
当社の大規模モデルであるKAPAO-Lは、テスト時間拡張なしで、次の最高のシングルステージモデルよりも2.5倍高速で、精度が4.0 APの精度で、Microsoft COCO Keypoints検証セット上で70.6のAPを達成する。
さらに、カパオは重閉塞の存在に優れる。
crowdpose テストセットでは、kapao-l は ap 68.9 の単段法で新しい最先端精度を達成する。
関連論文リスト
- SHaRPose: Sparse High-Resolution Representation for Human Pose
Estimation [39.936860590417346]
Sparse High- resolution Representations のみを人間の姿勢推定に用いるフレームワーク(SHaRPose)を提案する。
我々のモデルであるSHaRPose-Baseは、検証セット上で77.4 AP(+0.5 AP)、COCOテストデブセット上で76.7 AP(+0.5 AP)を達成し、ViTPose-Baseより1.4Times$速い速度で推論する。
論文 参考訳(メタデータ) (2023-12-17T16:29:16Z) - Hybrid model for Single-Stage Multi-Person Pose Estimation [3.592448408054345]
そこで本研究では,HybridPoseという,単段階多人数ポーズ推定のためのハイブリッドモデルを提案する。
密に配置されたキーポイントを検出するだけでなく、画像内の存在しないキーポイントをフィルタリングすることもできる。
論文 参考訳(メタデータ) (2023-05-02T02:55:29Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
本稿では,PoseMatcherを提案する。
3ビューシステムに基づくオブジェクトと画像のマッチングのための新しいトレーニングパイプラインを作成します。
PoseMatcherは、画像とポイントクラウドの異なる入力モダリティに対応できるように、IO-Layerを導入します。
論文 参考訳(メタデータ) (2023-04-03T21:14:59Z) - MDPose: Real-Time Multi-Person Pose Estimation via Mixture Density Model [27.849059115252008]
本稿では,人間のキーポイントの結合分布をモデル化し,一段階のインスタンス認識ポーズ推定手法を提案する。
我々のMDPoseは、人間のキーポイントの高次元の関節分布を学習し、最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-02-17T08:29:33Z) - 2D Human Pose Estimation with Explicit Anatomical Keypoints Structure
Constraints [15.124606575017621]
本稿では,解剖学的キーポイント構造制約を明示した新しい2次元ポーズ推定手法を提案する。
提案手法は,既存のボトムアップやトップダウンの人間のポーズ推定手法に組み込むことができる。
提案手法は,既存のボトムアップとトップダウンの人間のポーズ推定手法に対して良好に機能する。
論文 参考訳(メタデータ) (2022-12-05T11:01:43Z) - Bottom-Up 2D Pose Estimation via Dual Anatomical Centers for Small-Scale
Persons [75.86463396561744]
マルチパーソン2Dポーズ推定では、ボトムアップ手法は同時にすべての人のポーズを予測する。
本手法は,バウンディングボックス精度を38.4%改善し,バウンディングボックスリコールを39.1%改善した。
ヒトのポーズAP評価では,COCOテストデフセット上で新しいSOTA(71.0 AP)を単一スケールテストで達成する。
論文 参考訳(メタデータ) (2022-08-25T10:09:10Z) - Pose for Everything: Towards Category-Agnostic Pose Estimation [93.07415325374761]
Category-Agnostic Pose Estimation (CAPE) は、キーポイント定義を持つ少数のサンプルのみを与えられた任意の種類のオブジェクトのポーズを検出することができるポーズ推定モデルを作成することを目的としている。
異なるキーポイント間のインタラクションと、サポートとクエリイメージの関係をキャプチャするために、トランスフォーマーベースのキーポイントインタラクションモジュール(KIM)を提案する。
また、20K以上のインスタンスを含む100のオブジェクトカテゴリの2次元ポーズデータセットであるMP-100データセットを導入し、CAPEアルゴリズムの開発に適している。
論文 参考訳(メタデータ) (2022-07-21T09:40:54Z) - 6D Object Pose Estimation using Keypoints and Part Affinity Fields [24.126513851779936]
RGB画像からの6Dオブジェクトのポーズ推定のタスクは、自律型サービスロボットが現実世界と対話できるための重要な要件である。
既知物体の6自由度変換と配向を推定するための2段階パイプラインを提案する。
論文 参考訳(メタデータ) (2021-07-05T14:41:19Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
中心点から抽出された画像の特徴は、離れたキーポイントや境界ボックスの境界を予測するための限られた情報を含んでいると論じる。
推論を容易にするために,より有利な位置に配置された点集合からの回帰を行うことを提案する。
我々は、オブジェクト検出、インスタンス分割、人間のポーズ推定にPoint-Set Anchorsと呼ばれるこのフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-06T15:59:56Z) - Bottom-Up Human Pose Estimation by Ranking Heatmap-Guided Adaptive
Keypoint Estimates [76.51095823248104]
キーポイント検出とグループ化(キーポイント回帰)性能を改善するために,これまでにほとんど,あるいはまったく研究されていないいくつかのスキームを提案する。
まず,画素単位のキーポイントレグレッションに対して,キーポイントのリグレッションを改善するために分離する代わりに,キーポイントのヒートマップを利用する。
第2に、スケールと向きの分散を扱うための適応表現を学習するために、画素単位の空間変換器ネットワークを採用する。
第3に,真のポーズとなる確率の高い推定ポーズを促進するために,結合形状と熱値評価手法を提案する。
論文 参考訳(メタデータ) (2020-06-28T01:14:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。