Enhanced Correlation Matching based Video Frame Interpolation
- URL: http://arxiv.org/abs/2111.08869v1
- Date: Wed, 17 Nov 2021 02:43:45 GMT
- Title: Enhanced Correlation Matching based Video Frame Interpolation
- Authors: Sungho Lee, Narae Choi, Woong Il Choi
- Abstract summary: We propose a novel framework called the Enhanced Correlation Matching based Video Frame Interpolation Network.
The proposed scheme employs the recurrent pyramid architecture that shares the parameters among each pyramid layer for optical flow estimation.
Experiment results demonstrate that the proposed scheme outperforms the previous works at 4K video data and low-resolution benchmark datasets as well as in terms of objective and subjective quality.
- Score: 5.304928339627251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel DNN based framework called the Enhanced Correlation
Matching based Video Frame Interpolation Network to support high resolution
like 4K, which has a large scale of motion and occlusion. Considering the
extensibility of the network model according to resolution, the proposed scheme
employs the recurrent pyramid architecture that shares the parameters among
each pyramid layer for optical flow estimation. In the proposed flow
estimation, the optical flows are recursively refined by tracing the location
with maximum correlation. The forward warping based correlation matching
enables to improve the accuracy of flow update by excluding incorrectly warped
features around the occlusion area. Based on the final bi-directional flows,
the intermediate frame at arbitrary temporal position is synthesized using the
warping and blending network and it is further improved by refinement network.
Experiment results demonstrate that the proposed scheme outperforms the
previous works at 4K video data and low-resolution benchmark datasets as well
in terms of objective and subjective quality with the smallest number of model
parameters.
Related papers
- Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - OCAI: Improving Optical Flow Estimation by Occlusion and Consistency Aware Interpolation [55.676358801492114]
We propose OCAI, a method that supports robust frame ambiguities by generating intermediate video frames alongside optical flows in between.
Our evaluations demonstrate superior quality and enhanced optical flow accuracy on established benchmarks such as Sintel and KITTI.
arXiv Detail & Related papers (2024-03-26T20:23:48Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
Video frame is an important low-level computation vision task, which can increase frame rate for more fluent visual experience.
Existing methods have achieved great success by employing advanced motion models and synthesis networks.
WaveletVFI can reduce computation up to 40% while maintaining similar accuracy, making it perform more efficiently against other state-of-the-arts.
arXiv Detail & Related papers (2023-09-07T06:41:15Z) - FDAN: Flow-guided Deformable Alignment Network for Video
Super-Resolution [12.844337773258678]
Flow-guided Deformable Module (FDM) is proposed to integrate optical flow into deformable convolution.
FDAN reaches the state-of-the-art performance on two benchmark datasets.
arXiv Detail & Related papers (2021-05-12T13:18:36Z) - PDWN: Pyramid Deformable Warping Network for Video Interpolation [11.62213584807003]
We propose a light but effective model, called Pyramid Deformable Warping Network (PDWN)
PDWN uses a pyramid structure to generate DConv offsets of the unknown middle frame with respect to the known frames through coarse-to-fine successive refinements.
Our method achieves better or on-par accuracy compared to state-of-the-art models on multiple datasets.
arXiv Detail & Related papers (2021-04-04T02:08:57Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA)
Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames.
Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.
arXiv Detail & Related papers (2020-10-02T11:40:09Z) - FPCR-Net: Feature Pyramidal Correlation and Residual Reconstruction for
Optical Flow Estimation [72.41370576242116]
We propose a semi-supervised Feature Pyramidal Correlation and Residual Reconstruction Network (FPCR-Net) for optical flow estimation from frame pairs.
It consists of two main modules: pyramid correlation mapping and residual reconstruction.
Experiment results show that the proposed scheme achieves the state-of-the-art performance, with improvement by 0.80, 1.15 and 0.10 in terms of average end-point error (AEE) against competing baseline methods.
arXiv Detail & Related papers (2020-01-17T07:13:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.