Multiway Point Cloud Mosaicking with Diffusion and Global Optimization
- URL: http://arxiv.org/abs/2404.00429v1
- Date: Sat, 30 Mar 2024 17:29:13 GMT
- Title: Multiway Point Cloud Mosaicking with Diffusion and Global Optimization
- Authors: Shengze Jin, Iro Armeni, Marc Pollefeys, Daniel Barath,
- Abstract summary: We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
- Score: 74.3802812773891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel framework for multiway point cloud mosaicking (named Wednesday), designed to co-align sets of partially overlapping point clouds -- typically obtained from 3D scanners or moving RGB-D cameras -- into a unified coordinate system. At the core of our approach is ODIN, a learned pairwise registration algorithm that iteratively identifies overlaps and refines attention scores, employing a diffusion-based process for denoising pairwise correlation matrices to enhance matching accuracy. Further steps include constructing a pose graph from all point clouds, performing rotation averaging, a novel robust algorithm for re-estimating translations optimally in terms of consensus maximization and translation optimization. Finally, the point cloud rotations and positions are optimized jointly by a diffusion-based approach. Tested on four diverse, large-scale datasets, our method achieves state-of-the-art pairwise and multiway registration results by a large margin on all benchmarks. Our code and models are available at https://github.com/jinsz/Multiway-Point-Cloud-Mosaicking-with-Diffusion-and-Global-Optimization.
Related papers
- PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
a Large Field of View with Perturbations [27.45001809414096]
PosDiffNet is a model for point cloud registration in 3D computer vision.
We leverage a graph neural partial differential equation (PDE) based on Beltrami flow to obtain high-dimensional features.
We employ the multi-level correspondence derived from the high feature similarity scores to facilitate alignment between point clouds.
We evaluate PosDiffNet on several 3D point cloud datasets, verifying that it achieves state-of-the-art (SOTA) performance for point cloud registration in large fields of view with perturbations.
arXiv Detail & Related papers (2024-01-06T08:58:15Z) - CP-SLAM: Collaborative Neural Point-based SLAM System [54.916578456416204]
This paper presents a collaborative implicit neural localization and mapping (SLAM) system with RGB-D image sequences.
In order to enable all these modules in a unified framework, we propose a novel neural point based 3D scene representation.
A distributed-to-centralized learning strategy is proposed for the collaborative implicit SLAM to improve consistency and cooperation.
arXiv Detail & Related papers (2023-11-14T09:17:15Z) - HybridFusion: LiDAR and Vision Cross-Source Point Cloud Fusion [15.94976936555104]
We propose a cross-source point cloud fusion algorithm called HybridFusion.
It can register cross-source dense point clouds from different viewing angle in outdoor large scenes.
The proposed approach is evaluated comprehensively through qualitative and quantitative experiments.
arXiv Detail & Related papers (2023-04-10T10:54:54Z) - RoCNet: 3D Robust Registration of Point-Clouds using Deep Learning [5.494111035517598]
This paper introduces a new method for 3D point cloud registration based on deep learning.
We conduct experiments on the ModelNet40 dataset, and our proposed architecture shows very promising results.
arXiv Detail & Related papers (2023-03-14T15:07:51Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
Probabilistic 3D point cloud registration methods have shown competitive performance in overcoming noise, outliers, and density variations.
This paper proposes a novel overlap-guided probabilistic registration approach that computes the optimal transformation from matched Gaussian Mixture Model (GMM) parameters.
arXiv Detail & Related papers (2022-10-17T08:02:33Z) - Parallel Structure from Motion for UAV Images via Weighted Connected
Dominating Set [5.17395782758526]
This paper proposes an algorithm to extract the global model for cluster merging and designs a parallel SfM solution to achieve efficient and accurate UAV image orientation.
The experimental results demonstrate that the proposed parallel SfM can achieve 17.4 times efficiency improvement and comparative orientation accuracy.
arXiv Detail & Related papers (2022-06-23T06:53:06Z) - Fast and Robust Registration of Partially Overlapping Point Clouds [5.073765501263891]
Real-time registration of partially overlapping point clouds has emerging applications in cooperative perception for autonomous vehicles.
Relative translation between point clouds in these applications is higher than in traditional SLAM and odometry applications.
We propose a novel registration method for partially overlapping point clouds where correspondences are learned using an efficient point-wise feature encoder.
arXiv Detail & Related papers (2021-12-18T12:39:05Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - Learning multiview 3D point cloud registration [74.39499501822682]
We present a novel, end-to-end learnable, multiview 3D point cloud registration algorithm.
Our approach outperforms the state-of-the-art by a significant margin, while being end-to-end trainable and computationally less costly.
arXiv Detail & Related papers (2020-01-15T03:42:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.