Motion Detection using CSI from Raspberry Pi 4
- URL: http://arxiv.org/abs/2111.09091v1
- Date: Wed, 17 Nov 2021 13:17:02 GMT
- Title: Motion Detection using CSI from Raspberry Pi 4
- Authors: Glenn Forbes, Stewart Massie, Susan Craw, Christopher Clare
- Abstract summary: Channel State Information (CSI) is a low cost, unintrusive form of radio sensing.
We have developed a novel, self-calibrating motion detection system which uses CSI data collected and processed on a stock Raspberry Pi 4.
- Score: 5.826796031213696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring behaviour in smart homes using sensors can offer insights into
changes in the independent ability and long-term health of residents. Passive
Infrared motion sensors (PIRs) are standard, however may not accurately track
the full duration of movement. They also require line-of-sight to detect motion
which can restrict performance and ensures they must be visible to residents.
Channel State Information (CSI) is a low cost, unintrusive form of radio
sensing which can monitor movement but also offers opportunities to generate
rich data. We have developed a novel, self-calibrating motion detection system
which uses CSI data collected and processed on a stock Raspberry Pi 4. This
system exploits the correlation between CSI frames, on which we perform
variance analysis using our algorithm to accurately measure the full period of
a resident's movement. We demonstrate the effectiveness of this approach in
several real-world environments. Experiments conducted demonstrate that
activity start and end time can be accurately detected for motion examples of
different intensities at different locations.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - DiffusionPoser: Real-time Human Motion Reconstruction From Arbitrary Sparse Sensors Using Autoregressive Diffusion [10.439802168557513]
Motion capture from a limited number of body-worn sensors has important applications in health, human performance, and entertainment.
Recent work has focused on accurately reconstructing whole-body motion from a specific sensor configuration using six IMUs.
We propose a single diffusion model, DiffusionPoser, which reconstructs human motion in real-time from an arbitrary combination of sensors.
arXiv Detail & Related papers (2023-08-31T12:36:50Z) - Leveraging arbitrary mobile sensor trajectories with shallow recurrent
decoder networks for full-state reconstruction [4.243926243206826]
We show that a sequence-to-vector model, such as an LSTM (long, short-term memory) network, with a decoder network, dynamic information can be mapped to full state-space estimates.
The exceptional performance of the network architecture is demonstrated on three applications.
arXiv Detail & Related papers (2023-07-20T21:42:01Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
Review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks.
Paper categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods.
arXiv Detail & Related papers (2023-04-19T16:21:14Z) - CRONOS: Colorization and Contrastive Learning for Device-Free NLoS Human
Presence Detection using Wi-Fi CSI [9.927073290898848]
Device-free human detection through sensors or cameras has been widely adopted, but it comes with privacy issues as well as misdetection for motionless people.
We propose a system called CRONOS, which generates dynamic recurrence plots (RPs) and color-coded CSI ratios to distinguish mobile and stationary people.
arXiv Detail & Related papers (2022-11-07T16:18:18Z) - E^2TAD: An Energy-Efficient Tracking-based Action Detector [78.90585878925545]
This paper presents a tracking-based solution to accurately and efficiently localize predefined key actions.
It won first place in the UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC)
arXiv Detail & Related papers (2022-04-09T07:52:11Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
We introduce the DeTAVIZ interface, which is a web browser based visualization tool for quick exploration and assessment of feasibility of DL based anomaly detection in a given problem.
DeTAVIZ allows the user to easily and quickly iterate through multiple post processing options and compare different models, and allows for manual optimisation towards a chosen metric.
arXiv Detail & Related papers (2021-09-21T10:38:26Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z) - Data-Driven Distributed State Estimation and Behavior Modeling in Sensor
Networks [5.817715558396024]
We formulate the problem of simultaneous state estimation and behavior learning in a sensor network.
We propose a simple yet effective solution by extending the Gaussian process-based Bayes filters (GP-BayesFilters) to an online, distributed setting.
The effectiveness of the proposed method is evaluated on tracking objects with unknown movement behaviors using both synthetic data and data collected from a multi-robot platform.
arXiv Detail & Related papers (2020-09-22T21:31:18Z) - RF Sensing for Continuous Monitoring of Human Activities for Home
Consumer Applications [13.353145284926986]
We report on a successful RF sensing system for home monitoring applications.
The system recognizes Activities of Daily Living(ADL) and detects unique motion characteristics.
Finding both the transition times and the time-spans of the different motions leads to improved classifications.
arXiv Detail & Related papers (2020-03-21T16:52:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.