Single-pass Object-adaptive Data Undersampling and Reconstruction for
MRI
- URL: http://arxiv.org/abs/2111.09212v1
- Date: Wed, 17 Nov 2021 16:06:06 GMT
- Title: Single-pass Object-adaptive Data Undersampling and Reconstruction for
MRI
- Authors: Zhishen Huang and Saiprasad Ravishankar
- Abstract summary: We propose a data-driven sampler using a convolutional neural network, MNet, to provide object-specific sampling patterns adaptive to each scanned object.
The network observes very limited low-frequency k-space data for each object and rapidly predicts the desired undersampling pattern.
Experimental results on the fastMRI knee dataset demonstrate the ability of the proposed learned undersampling network to generate object-specific masks at fourfold and eightfold acceleration.
- Score: 6.599344783327054
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is much recent interest in techniques to accelerate the data
acquisition process in MRI by acquiring limited measurements. Often
sophisticated reconstruction algorithms are deployed to maintain high image
quality in such settings. In this work, we propose a data-driven sampler using
a convolutional neural network, MNet, to provide object-specific sampling
patterns adaptive to each scanned object. The network observes very limited
low-frequency k-space data for each object and rapidly predicts the desired
undersampling pattern in one go that achieves high image reconstruction
quality.
We propose an accompanying alternating-type training framework with a
mask-backward procedure that efficiently generates training labels for the
sampler network and jointly trains an image reconstruction network.
Experimental results on the fastMRI knee dataset demonstrate the ability of the
proposed learned undersampling network to generate object-specific masks at
fourfold and eightfold acceleration that achieve superior image reconstruction
performance than several existing schemes. The source code for the proposed
joint sampling and reconstruction learning framework is available at
https://github.com/zhishenhuang/mri.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences [0.0]
In this work, we apply double deep Q-learning and REINFORCE algorithms to learn the sampling strategy for dynamic image reconstruction.
We consider the data in the format of time series, and the reconstruction method is a pre-trained autoencoder-typed neural network.
We present a proof of concept that reinforcement learning algorithms are effective to discover the optimal sampling pattern.
arXiv Detail & Related papers (2023-08-28T23:55:23Z) - Adaptive Local Neighborhood-based Neural Networks for MR Image
Reconstruction from Undersampled Data [7.670270099306413]
Recent works have shown significant promise for reconstructing MR images from sparsely sampled k-space data using deep learning.
In this work, we propose a technique that rapidly estimates deep neural networks directly at reconstruction time by fitting them on small adaptively estimated neighborhoods of a training set.
Our results demonstrate that our proposed locally-trained method produces higher-quality reconstructions compared to models trained globally on larger datasets as well as other scan-adaptive methods.
arXiv Detail & Related papers (2022-06-01T21:37:03Z) - PUERT: Probabilistic Under-sampling and Explicable Reconstruction
Network for CS-MRI [47.24613772568027]
Compressed Sensing MRI aims at reconstructing de-aliased images from sub-Nyquist sampling k-space data to accelerate MR Imaging.
We propose a novel end-to-end Probabilistic Under-sampling and Explicable Reconstruction neTwork, dubbed PUERT, to jointly optimize the sampling pattern and the reconstruction network.
Experiments on two widely used MRI datasets demonstrate that our proposed PUERT achieves state-of-the-art results in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2022-04-24T04:23:57Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.