Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction
- URL: http://arxiv.org/abs/2501.03737v1
- Date: Tue, 07 Jan 2025 12:29:32 GMT
- Title: Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction
- Authors: Hao Zhang, Qi Wang, Jian Sun, Zhijie Wen, Jun Shi, Shihui Ying,
- Abstract summary: We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.
We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.
Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
- Score: 48.30341580103962
- License:
- Abstract: Magnetic Resonance Imaging (MRI) is widely used in clinical practice, but suffered from prolonged acquisition time. Although deep learning methods have been proposed to accelerate acquisition and demonstrate promising performance, they rely on high-quality fully-sampled datasets for training in a supervised manner. However, such datasets are time-consuming and expensive-to-collect, which constrains their broader applications. On the other hand, self-supervised methods offer an alternative by enabling learning from under-sampled data alone, but most existing methods rely on further partitioned under-sampled k-space data as model's input for training, resulting in a loss of valuable information. Additionally, their models have not fully incorporated image priors, leading to degraded reconstruction performance. In this paper, we propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues when only under-sampled datasets are available. Specifically, by incorporating re-visible dual-domain loss, all under-sampled k-space data are utilized during training to mitigate information loss caused by further partitioning. This design enables the model to implicitly adapt to all under-sampled k-space data as input. Additionally, we design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction, incorporating imaging physics and image priors to guide the reconstruction process. By employing a Spatial-Frequency Feature Extraction (SFFE) block to capture global and local feature representation, we enhance the model's efficiency to learn comprehensive image priors. Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Score-based Generative Priors Guided Model-driven Network for MRI Reconstruction [14.53268880380804]
We propose a novel workflow where naive SMLD samples serve as additional priors to guide model-driven network training.
First, we adopted a pretrained score network to generate samples as preliminary guidance images (PGI)
Second, we designed a denoising module (DM) in the second step to coarsely eliminate artifacts and noises from PGIs.
Third, we designed a model-driven network guided by denoised PGIs to further recover fine details.
arXiv Detail & Related papers (2024-05-05T14:56:34Z) - Conditioning Generative Latent Optimization for Sparse-View CT Image Reconstruction [0.5497663232622965]
We propose an unsupervised conditional approach to the Generative Latent Optimization framework (cGLO)
The approach is tested on full-dose sparse-view CT using multiple training dataset sizes and varying numbers of viewing angles.
arXiv Detail & Related papers (2023-07-31T13:47:33Z) - CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
Reconstruction [4.967600587813224]
Undersampling k-space data in MRI reduces scan time but pose challenges in image reconstruction.
We propose CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for accelerated MRI reconstruction.
arXiv Detail & Related papers (2023-06-20T02:21:45Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Self-Supervised Learning for MRI Reconstruction with a Parallel Network
Training Framework [24.46388892324129]
The proposed method is flexible and can be employed in any existing deep learning-based method.
The effectiveness of the method is evaluated on an open brain MRI dataset.
arXiv Detail & Related papers (2021-09-26T06:09:56Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.