Sentiment Analysis of Microblogging dataset on Coronavirus Pandemic
- URL: http://arxiv.org/abs/2111.09275v1
- Date: Wed, 17 Nov 2021 18:13:54 GMT
- Title: Sentiment Analysis of Microblogging dataset on Coronavirus Pandemic
- Authors: Nosin Ibna Mahbub, Md Rakibul Islam, Md Al Amin, Md Khairul Islam,
Bikash Chandra Singh, Md Imran Hossain Showrov, Anirudda Sarkar
- Abstract summary: Coronavirus (COVID-19) is a contagious illness caused by the coronavirus 2 that causes severe respiratory symptoms.
In this paper, we have analyzed the Twitter dataset for evaluating the sentiment using several machine learning algorithms.
- Score: 0.8252679746749371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment analysis can largely influence the people to get the update of the
current situation. Coronavirus (COVID-19) is a contagious illness caused by the
coronavirus 2 that causes severe respiratory symptoms. The lives of millions
have continued to be affected by this pandemic, several countries have resorted
to a full lockdown. During this lockdown, people have taken social networks to
express their emotions to find a way to calm themselves down. People are
spreading their sentiments through microblogging websites as one of the most
preventive steps of this disease is the socialization to gain people's
awareness to stay home and keep their distance when they are outside home.
Twitter is a popular online social media platform for exchanging ideas. People
can post their different sentiments, which can be used to aware people. But,
some people want to spread fake news to frighten the people. So, it is
necessary to identify the positive, negative, and neutral thoughts so that the
positive opinions can be delivered to the mass people for spreading awareness
to the people. Moreover, a huge volume of data is floating on Twitter. So, it
is also important to identify the context of the dataset. In this paper, we
have analyzed the Twitter dataset for evaluating the sentiment using several
machine learning algorithms. Later, we have found out the context learning of
the dataset based on the sentiments.
Related papers
- Fine-tuned Sentiment Analysis of COVID-19 Vaccine-Related Social Media
Data: Comparative Study [0.7874708385247353]
This study investigated and compared public sentiment related to COVID-19 vaccines expressed on two popular social media platforms, Reddit and Twitter.
We created a fine-tuned DistilRoBERTa model to predict sentiments of approximately 9.5 million Tweets and 70 thousand Reddit comments.
Our results determined that the average sentiment expressed on Twitter was more negative (52% positive) than positive.
arXiv Detail & Related papers (2022-10-17T16:22:18Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - Understanding Twitters behavior during the pandemic: Fake News and Fear [0.0]
The SARS-CoV-2 novel coronavirus (COVID-19) has been accompanied by a large amount of misleading and false information about the virus, especially on social media.
We aim to explore the percentage of fake news being spread on Twitter as well as measure the sentiment of the public at the same time.
Our study is useful in establishing the role of Twitter, and social media, during a crisis, and more specifically during crisis management.
arXiv Detail & Related papers (2022-02-10T16:39:29Z) - Global Sentiment Analysis Of COVID-19 Tweets Over Time [0.0]
The social networking site, Twitter showed an unprecedented increase in tweets related to the novel Coronavirus in a very short span of time.
This paper presents the global sentiment analysis of tweets related to Coronavirus and how the sentiment of people in different countries has changed over time.
arXiv Detail & Related papers (2020-10-27T12:10:10Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
We analyze the topic and sentiment dynamics due to COVID-19 from the massive social media posts.
Some topics like stay safe home" are dominated with positive sentiment.
The others such as people death" are consistently showing negative sentiment.
arXiv Detail & Related papers (2020-07-05T12:05:30Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
An estimated 2.95 billion people in 2019 used social media worldwide.
The widespread of the Coronavirus COVID-19 resulted with a tsunami of social media.
This paper presents a large-scale study based on data mined from Twitter.
arXiv Detail & Related papers (2020-05-18T15:53:13Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
We introduce HurricaneEmo, an emotion dataset of 15,000 English tweets spanning three hurricanes: Harvey, Irma, and Maria.
We present a comprehensive study of fine-grained emotions and propose classification tasks to discriminate between coarse-grained emotion groups.
arXiv Detail & Related papers (2020-04-29T16:17:49Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.