DeepCurrents: Learning Implicit Representations of Shapes with
Boundaries
- URL: http://arxiv.org/abs/2111.09383v1
- Date: Wed, 17 Nov 2021 20:34:20 GMT
- Title: DeepCurrents: Learning Implicit Representations of Shapes with
Boundaries
- Authors: David Palmer and Dmitriy Smirnov and Stephanie Wang and Albert Chern
and Justin Solomon
- Abstract summary: We propose a hybrid shape representation that combines explicit boundary curves with implicit learned interiors.
We further demonstrate learning families of shapes jointly parameterized by boundary curves and latent codes.
- Score: 25.317812435426216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent techniques have been successful in reconstructing surfaces as level
sets of learned functions (such as signed distance fields) parameterized by
deep neural networks. Many of these methods, however, learn only closed
surfaces and are unable to reconstruct shapes with boundary curves. We propose
a hybrid shape representation that combines explicit boundary curves with
implicit learned interiors. Using machinery from geometric measure theory, we
parameterize currents using deep networks and use stochastic gradient descent
to solve a minimal surface problem. By modifying the metric according to target
geometry coming, e.g., from a mesh or point cloud, we can use this approach to
represent arbitrary surfaces, learning implicitly defined shapes with
explicitly defined boundary curves. We further demonstrate learning families of
shapes jointly parameterized by boundary curves and latent codes.
Related papers
- 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
We propose a novel differentiable meshing algorithm for extracting surface meshes from neural implicit representations.
Our method produces meshes with regular tessellation patterns and fewer triangle faces compared to existing methods.
arXiv Detail & Related papers (2022-10-05T16:52:25Z) - Minimal Neural Atlas: Parameterizing Complex Surfaces with Minimal
Charts and Distortion [71.52576837870166]
We present Minimal Neural Atlas, a novel atlas-based explicit neural surface representation.
At its core is a fully learnable parametric domain, given by an implicit probabilistic occupancy field defined on an open square of the parametric space.
Our reconstructions are more accurate in terms of the overall geometry, due to the separation of concerns on topology and geometry.
arXiv Detail & Related papers (2022-07-29T16:55:06Z) - A Level Set Theory for Neural Implicit Evolution under Explicit Flows [102.18622466770114]
Coordinate-based neural networks parameterizing implicit surfaces have emerged as efficient representations of geometry.
We present a framework that allows applying deformation operations defined for triangle meshes onto such implicit surfaces.
We show that our approach exhibits improvements for applications like surface smoothing, mean-curvature flow, inverse rendering and user-defined editing on implicit geometry.
arXiv Detail & Related papers (2022-04-14T17:59:39Z) - Differential Geometry in Neural Implicits [0.6198237241838558]
We introduce a neural implicit framework that bridges discrete differential geometry of triangle meshes and continuous differential geometry of neural implicit surfaces.
It exploits the differentiable properties of neural networks and the discrete geometry of triangle meshes to approximate them as the zero-level sets of neural implicit functions.
arXiv Detail & Related papers (2022-01-23T13:40:45Z) - DeepMesh: Differentiable Iso-Surface Extraction [53.77622255726208]
We introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields.
Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples.
We exploit this to define DeepMesh -- end-to-end differentiable mesh representation that can vary its topology.
arXiv Detail & Related papers (2021-06-20T20:12:41Z) - Exact imposition of boundary conditions with distance functions in
physics-informed deep neural networks [0.5804039129951741]
We introduce geometry-aware trial functions in artifical neural networks to improve the training in deep learning for partial differential equations.
To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as $phi$ multiplied by the PINN approximation.
We present numerical solutions for linear and nonlinear boundary-value problems over domains with affine and curved boundaries.
arXiv Detail & Related papers (2021-04-17T03:02:52Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - MeshSDF: Differentiable Iso-Surface Extraction [45.769838982991736]
We introduce a differentiable way to produce explicit surface mesh representations from Deep Signed Distance Functions.
Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples.
We exploit this to define MeshSDF, an end-to-end differentiable mesh representation which can vary its topology.
arXiv Detail & Related papers (2020-06-06T23:44:05Z) - A deep learning approach for the computation of curvature in the
level-set method [0.0]
We propose a strategy to estimate the mean curvature of two-dimensional implicit in the level-set method.
Our approach is based on fitting feed-forward neural networks to synthetic data sets constructed from circular immersed in uniform grids of various resolutions.
arXiv Detail & Related papers (2020-02-04T00:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.