A deep learning approach for the computation of curvature in the
level-set method
- URL: http://arxiv.org/abs/2002.02804v4
- Date: Wed, 28 Sep 2022 04:23:56 GMT
- Title: A deep learning approach for the computation of curvature in the
level-set method
- Authors: Luis \'Angel Larios-C\'ardenas and Frederic Gibou
- Abstract summary: We propose a strategy to estimate the mean curvature of two-dimensional implicit in the level-set method.
Our approach is based on fitting feed-forward neural networks to synthetic data sets constructed from circular immersed in uniform grids of various resolutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a deep learning strategy to estimate the mean curvature of
two-dimensional implicit interfaces in the level-set method. Our approach is
based on fitting feed-forward neural networks to synthetic data sets
constructed from circular interfaces immersed in uniform grids of various
resolutions. These multilayer perceptrons process the level-set values from
mesh points next to the free boundary and output the dimensionless curvature at
their closest locations on the interface. Accuracy analyses involving irregular
interfaces, in both uniform and adaptive grids, show that our models are
competitive with traditional numerical schemes in the $L^1$ and $L^2$ norms. In
particular, our neural networks approximate curvature with comparable precision
in coarse resolutions, when the interface features steep curvature regions, and
when the number of iterations to reinitialize the level-set function is small.
Although the conventional numerical approach is more robust than our framework,
our results have unveiled the potential of machine learning for dealing with
computational tasks where the level-set method is known to experience
difficulties. We also establish that an application-dependent map of local
resolutions to neural models can be devised to estimate mean curvature more
effectively than a universal neural network.
Related papers
- Deep Loss Convexification for Learning Iterative Models [11.36644967267829]
Iterative methods such as iterative closest point (ICP) for point cloud registration often suffer from bad local optimality.
We propose learning to form a convex landscape around each ground truth.
arXiv Detail & Related papers (2024-11-16T01:13:04Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Machine learning algorithms for three-dimensional mean-curvature
computation in the level-set method [0.0]
We propose a data-driven mean-curvature solver for the level-set method.
Our proposed system can yield more accurate mean-curvature estimations than modern particle-based interface reconstruction.
arXiv Detail & Related papers (2022-08-18T20:19:22Z) - Error-Correcting Neural Networks for Two-Dimensional Curvature
Computation in the Level-Set Method [0.0]
We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method.
Our main contribution is a redesigned hybrid solver that relies on numerical schemes to enable machine-learning operations on demand.
arXiv Detail & Related papers (2022-01-22T05:14:40Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
We show that gradient descent can efficiently learn ball indicator functions using a depth 2 neural network with two layers of sigmoidal activations.
This is the first optimization-based separation result where the approximation benefits of the stronger architecture provably manifest in practice.
arXiv Detail & Related papers (2021-12-04T18:07:47Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Level-Set Curvature Neural Networks: A Hybrid Approach [0.0]
We present a hybrid strategy based on deep learning to compute mean curvature in the level-set method.
The proposed inference system combines a dictionary of improved regression models with standard numerical schemes to estimate curvature more accurately.
Our findings confirm that machine learning is a promising venue for devising viable solutions to the level-set method's numerical shortcomings.
arXiv Detail & Related papers (2021-04-07T06:51:52Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.