論文の概要: Attacking Deep Learning AI Hardware with Universal Adversarial
Perturbation
- arxiv url: http://arxiv.org/abs/2111.09488v1
- Date: Thu, 18 Nov 2021 02:54:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-19 15:14:31.214470
- Title: Attacking Deep Learning AI Hardware with Universal Adversarial
Perturbation
- Title(参考訳): 普遍的対向摂動によるディープラーニングAIハードウェアの攻撃
- Authors: Mehdi Sadi, B. M. S. Bahar Talukder, Kaniz Mishty, and Md Tauhidur
Rahman
- Abstract要約: Universal Adversarial Perturbationsは、実用的なディープラーニングアプリケーションのセキュリティと整合性を著しく損なう可能性がある。
ローグ手段(例えばマルウェアやトロイの木馬)によって起動された場合、既存の対策を回避できる攻撃戦略を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal Adversarial Perturbations are image-agnostic and model-independent
noise that when added with any image can mislead the trained Deep Convolutional
Neural Networks into the wrong prediction. Since these Universal Adversarial
Perturbations can seriously jeopardize the security and integrity of practical
Deep Learning applications, existing techniques use additional neural networks
to detect the existence of these noises at the input image source. In this
paper, we demonstrate an attack strategy that when activated by rogue means
(e.g., malware, trojan) can bypass these existing countermeasures by augmenting
the adversarial noise at the AI hardware accelerator stage. We demonstrate the
accelerator-level universal adversarial noise attack on several deep Learning
models using co-simulation of the software kernel of Conv2D function and the
Verilog RTL model of the hardware under the FuseSoC environment.
- Abstract(参考訳): Universal Adversarial Perturbationsは、画像に依存しないモデルに依存しないノイズであり、任意の画像を追加すると、訓練されたDeep Convolutional Neural Networksを誤った予測に導くことができる。
これらのユニバーサル・アドバイサル・パーバベーションは、実用的なディープラーニングアプリケーションのセキュリティと整合性を著しく損なう可能性があるため、既存の手法では、入力画像ソースにおけるこれらのノイズの存在を検出するために、追加のニューラルネットワークを使用している。
本稿では,不正な手段(マルウェア,トロイの木馬など)によって起動された場合,aiハードウェアアクセラレーションの段階での敵対的ノイズを増大させることで,既存の対策を回避できる攻撃戦略を示す。
本稿では,conv2d関数のソフトウェアカーネルとハードウェアのverilog rtlモデルとの共シミュレーションを用いて,複数の深層学習モデルにおけるアクセラレーションレベルユニバーサル・コンバーサリーノイズ攻撃を実証する。
関連論文リスト
- The Inherent Adversarial Robustness of Analog In-Memory Computing [2.435021773579434]
Deep Neural Network(DNN)アルゴリズムの重要な課題は、敵の攻撃に対する脆弱性である。
本稿では,位相変化メモリ(PCM)デバイスを用いたAIMCチップ上での予測を実験的に検証する。
ハードウェア・イン・ザ・ループ攻撃を行う際には、さらなる堅牢性も観察される。
論文 参考訳(メタデータ) (2024-11-11T14:29:59Z) - Defense against ML-based Power Side-channel Attacks on DNN Accelerators with Adversarial Attacks [21.611341074006162]
AIAShieldはFPGAベースのAIアクセラレータを保護するための新しい防衛手法である。
我々は、機械学習コミュニティの卓越した敵攻撃技術を活用して、繊細なノイズを発生させる。
AIAShieldは、転送性に優れた既存のソリューションより優れている。
論文 参考訳(メタデータ) (2023-12-07T04:38:01Z) - A Streamlit-based Artificial Intelligence Trust Platform for
Next-Generation Wireless Networks [0.0]
本稿では,NextGネットワークにStreamlitを用いたAI信頼プラットフォームを提案する。
研究者は、敵の脅威に対してAIモデルとアプリケーションを評価し、防御し、認証し、検証することができる。
論文 参考訳(メタデータ) (2022-10-25T05:26:30Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
適応型ニューラルネットワークの動的対向攻撃問題について検討する。
本稿では,LGM(Leaded Gradient Method)を提案する。
我々のLGMは、動的無意識攻撃法と比較して、優れた敵攻撃性能を達成している。
論文 参考訳(メタデータ) (2022-10-15T01:32:08Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - An integrated Auto Encoder-Block Switching defense approach to prevent
adversarial attacks [0.0]
逆入力サンプルに対する最先端のニューラルネットワークの脆弱性は、劇的に増大している。
本稿では,自動エンコーダとブロックスイッチングアーキテクチャを組み合わせたディフェンスアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-11T10:58:24Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
本稿では,大規模なマルチインプット・マルチアウトプット(MAMIMO)ネットワークのダウンリンクにおいて,逆攻撃がDLベースの電力割り当てを損なう可能性があることを示す。
我々はこれらの攻撃のパフォーマンスをベンチマークし、ニューラルネットワーク(NN)の入力に小さな摂動がある場合、ホワイトボックス攻撃は最大86%まで実現不可能な解決策をもたらすことを示した。
論文 参考訳(メタデータ) (2021-01-28T16:18:19Z) - Double Targeted Universal Adversarial Perturbations [83.60161052867534]
本稿では, インスタンス別画像依存摂動と汎用的普遍摂動のギャップを埋めるために, 二重目標普遍摂動(DT-UAP)を導入する。
提案したDTAアルゴリズムの幅広いデータセットに対する有効性を示すとともに,物理攻撃の可能性を示す。
論文 参考訳(メタデータ) (2020-10-07T09:08:51Z) - Hardware Accelerator for Adversarial Attacks on Deep Learning Neural
Networks [7.20382137043754]
強靭な物理的摂動を生成するために, 対向攻撃ネットワークアルゴリズムのクラスが提案されている。
本稿では,メムリスタクロスバーアレーをベースとした敵攻撃用ハードウェアアクセラレータを提案する。
論文 参考訳(メタデータ) (2020-08-03T21:55:41Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。