Error-mitigated deep-circuit quantum simulation: steady state and
relaxation rate problems
- URL: http://arxiv.org/abs/2111.09622v2
- Date: Fri, 19 Nov 2021 02:45:54 GMT
- Title: Error-mitigated deep-circuit quantum simulation: steady state and
relaxation rate problems
- Authors: Anbang Wang, Jingning Zhang, Ying Li
- Abstract summary: We show that digital quantum simulation of closed quantum systems are robust against the accumulation of Trotter errors.
We propose a new error-mitigation technique based on the scaling behavior in the vicinity of the critical point of a quantum phase transition.
- Score: 4.762232147934851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep-circuit quantum computation, like Shor's algorithm, is undermined by
error accumulation, and near-future quantum techniques are far from adequate
for full-fledged quantum error correction. Instead of resorting to
shallow-circuit quantum algorithms, recent theoretical research suggests that
digital quantum simulation (DQS) of closed quantum systems are robust against
the accumulation of Trotter errors, as long as local observables are concerned.
In this paper, we investigate digital quantum simulation of open quantum
systems. First, we prove that the deviation in the steady state obtained from
digital quantum simulation depends only on the error in a single Trotter step,
which indicates that error accumulation may not be disastrous. By numerical
simulation of the quantum circuits for the DQS of the dissipative XYZ model, we
then show that the correct results can be recovered by quantum error mitigation
as long as the error rate in the DQS is below a sharp threshold. We explain
this threshold behavior by the existence of a dissipation-driven quantum phase
transition. Finally, we propose a new error-mitigation technique based on the
scaling behavior in the vicinity of the critical point of a quantum phase
transition. Our results expand the territory of near-future available quantum
algorithms and stimulate further theoretical and experimental efforts in
practical quantum applications.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Real-time quantum error correction beyond break-even [0.0]
We show that a fully stabilized and error-corrected logical qubit's quantum coherence is significantly longer than that of all the imperfect quantum components involved in the quantum error correction process.
We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning.
arXiv Detail & Related papers (2022-11-16T18:58:12Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Mitigating Quantum Errors via Truncated Neumann Series [10.04862322536857]
We propose a unified framework that can mitigate quantum gate and measurement errors in computing quantum expectation values.
The essential idea is to cancel the effect of quantum error by approximating its inverse via linearly combining quantum errors of different orders.
We test this framework for different quantum errors and find that the computation accuracy is substantially improved.
arXiv Detail & Related papers (2021-11-01T04:16:49Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
We introduce $textitneural error mitigation$, a novel method that uses neural networks to improve estimates of ground states and ground-state observables.
Our results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors.
Our method is a promising strategy for extending the reach of near-term quantum computers to solve complex quantum simulation problems.
arXiv Detail & Related papers (2021-05-17T18:00:57Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.