論文の概要: On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications
- arxiv url: http://arxiv.org/abs/2111.09838v1
- Date: Thu, 11 Nov 2021 22:24:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-21 15:04:58.730764
- Title: On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications
- Title(参考訳): 資源制約のあるモバイルアプリケーションの効率的な不確実性推定について
- Authors: Johanna Rock, Tiago Azevedo, Ren\'e de Jong, Daniel Ruiz-Mu\~noz,
Partha Maji
- Abstract要約: 予測の不確実性は、モデル予測を補完し、下流タスクの機能を改善します。
Axolotlフレームワークを用いてモンテカルロ・ドロップアウト(MCDO)モデルを構築することでこの問題に対処する。
我々は,(1)CIFAR10データセットを用いた多クラス分類タスク,(2)より複雑な人体セグメンテーションタスクについて実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have shown great success in prediction quality while
reliable and robust uncertainty estimation remains a challenge. Predictive
uncertainty supplements model predictions and enables improved functionality of
downstream tasks including embedded and mobile applications, such as virtual
reality, augmented reality, sensor fusion, and perception. These applications
often require a compromise in complexity to obtain uncertainty estimates due to
very limited memory and compute resources. We tackle this problem by building
upon Monte Carlo Dropout (MCDO) models using the Axolotl framework;
specifically, we diversify sampled subnetworks, leverage dropout patterns, and
use a branching technique to improve predictive performance while maintaining
fast computations. We conduct experiments on (1) a multi-class classification
task using the CIFAR10 dataset, and (2) a more complex human body segmentation
task. Our results show the effectiveness of our approach by reaching close to
Deep Ensemble prediction quality and uncertainty estimation, while still
achieving faster inference on resource-limited mobile platforms.
- Abstract(参考訳): 深層ニューラルネットワークは予測品質に大きな成功を収め、信頼性と堅牢な不確実性推定は依然として課題である。
予測の不確実性はモデル予測を補完し、仮想現実、拡張現実、センサー融合、知覚など、組み込みおよびモバイルアプリケーションを含む下流タスクの機能を改善する。
これらのアプリケーションは、非常に限られたメモリと計算資源のために不確実性推定を得るために、複雑さの妥協を必要とすることが多い。
axolotlフレームワークを使用してモンテカルロドロップアウト(mcdo)モデルを構築してこの問題に取り組む。具体的には、サンプルされたサブネットワークを多様化し、ドロップアウトパターンを活用し、分岐技術を用いて高速な計算を維持しながら予測性能を向上させる。
我々は,(1)CIFAR10データセットを用いた多クラス分類タスク,(2)より複雑な人体セグメンテーションタスクについて実験を行った。
提案手法は,リソース制限のあるモバイルプラットフォームでより高速に推論できながら,精度や不確実性の推定に近づいた場合の有効性を示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - SURE: SUrvey REcipes for building reliable and robust deep networks [12.268921703825258]
本稿では,深層ニューラルネットワークにおける不確実性推定手法を再検討し,信頼性を高めるために一連の手法を統合する。
我々は,不確実性推定の有効性を示す重要なテストベッドである故障予測のベンチマークに対して,SUREを厳格に評価する。
データ破損、ラベルノイズ、長い尾のクラス分布といった現実世界の課題に適用した場合、SUREは顕著な堅牢性を示し、現在の最先端の特殊手法と同等あるいは同等な結果をもたらす。
論文 参考訳(メタデータ) (2024-03-01T13:58:19Z) - DUDES: Deep Uncertainty Distillation using Ensembles for Semantic
Segmentation [11.099838952805325]
予測の不確実性の定量化は、そのようなアプリケーションにディープニューラルネットワークを使用するための、有望な取り組みである。
本稿では,アンサンブルを用いた深部不確実性蒸留(DuDES)と呼ばれる,効率的かつ確実な不確実性評価手法を提案する。
DUDESはディープ・アンサンブル(Deep Ensemble)による学生-教師の蒸留を適用し、予測の不確かさを1つの前方パスで正確に推定する。
論文 参考訳(メタデータ) (2023-03-17T08:56:27Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Neural Networks with Quantization Constraints [111.42313650830248]
量子化学習における制約付き学習手法を提案する。
結果の問題は強い双対であり、勾配推定は不要であることを示す。
提案手法は画像分類タスクにおける競合性能を示す。
論文 参考訳(メタデータ) (2022-10-27T17:12:48Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
組込みエッジシステム上に展開されたNNにおける予測不確実性推定のための効率的なフレームワークを提案する。
フレームワークは1つのフォワードパスのみに基づいて予測の不確実性を提供するために、ゼロから構築されている。
提案手法は, 堅牢かつ正確な不確実性推定だけでなく, システム性能の点で最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-02-11T11:44:32Z) - A comparison of Monte Carlo dropout and bootstrap aggregation on the
performance and uncertainty estimation in radiation therapy dose prediction
with deep learning neural networks [0.46180371154032895]
本稿では,モンテカルロ投棄法(MCDO)とブートストラップアグリゲーション(バッグング)をディープラーニングモデルに応用し,放射線治療用線量予測の不確かさを推定する手法を提案する。
パフォーマンス面では、バギングは調査対象のほとんどの指標において統計的に顕著な損失値と誤差を減少させる。
論文 参考訳(メタデータ) (2020-11-01T00:24:43Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。