論文の概要: Interpreting deep urban sound classification using Layer-wise Relevance
Propagation
- arxiv url: http://arxiv.org/abs/2111.10235v1
- Date: Fri, 19 Nov 2021 14:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-22 16:33:44.471458
- Title: Interpreting deep urban sound classification using Layer-wise Relevance
Propagation
- Title(参考訳): 層間関係伝搬を用いた深部都市音の分類
- Authors: Marco Colussi and Stavros Ntalampiras
- Abstract要約: 本研究は, 都市音分類のためのディープニューラルネットワークを構築することにより, 聴覚障害に悩まされるドライバの敏感な応用に焦点を当てた。
我々は,MelとConstant-Qスペクトログラムの2つの異なる音声信号表現を使用し,ディープニューラルネットワークによる決定は,レイヤワイド関連伝搬によって説明される。
総合的に、深層都市音の分類を理解するための説明可能なAIフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.177947445379688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: After constructing a deep neural network for urban sound classification, this
work focuses on the sensitive application of assisting drivers suffering from
hearing loss. As such, clear etiology justifying and interpreting model
predictions comprise a strong requirement. To this end, we used two different
representations of audio signals, i.e. Mel and constant-Q spectrograms, while
the decisions made by the deep neural network are explained via layer-wise
relevance propagation. At the same time, frequency content assigned with high
relevance in both feature sets, indicates extremely discriminative information
characterizing the present classification task. Overall, we present an
explainable AI framework for understanding deep urban sound classification.
- Abstract(参考訳): 都市音分類のためのディープニューラルネットワークを構築した後、この研究は聴覚障害に苦しむドライバーの繊細な応用に焦点を当てた。
したがって、モデル予測を正当化し解釈する明確なエチオロジーは、強い要求である。
この目的のために、我々は、MelとConstant-Q Spectrogramという2つの異なるオーディオ信号の表現を使用し、深層ニューラルネットワークによる決定は、レイヤワイドな関連性伝播によって説明される。
同時に、両特徴集合に高い関連性を持つ周波数コンテンツが、現在分類課題を特徴付ける極端に識別的な情報を示す。
総合的に、深層都市音の分類を理解するための説明可能なAIフレームワークを提案する。
関連論文リスト
- Heterogeneous sound classification with the Broad Sound Taxonomy and Dataset [6.91815289914328]
本稿では,異種音の自動分類手法について検討する。
手動のアノテーションによってデータセットを構築し、精度、クラスごとの多様な表現、実世界のシナリオにおける関連性を保証する。
実験結果から,音響情報や意味情報をエンコードした音声埋め込みは,分類作業において高い精度を実現することが示された。
論文 参考訳(メタデータ) (2024-10-01T18:09:02Z) - Explaining Spectrograms in Machine Learning: A Study on Neural Networks for Speech Classification [2.4472308031704073]
本研究では,ニューラルネットワークで学習した音声の正確な分類のための識別パターンについて検討する。
母音分類のためのニューラルネットワークのアクティベーションと特徴を調べることで、スペクトログラムでネットワークが何を見るかについての洞察を得る。
論文 参考訳(メタデータ) (2024-07-10T07:37:18Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Robust Semantic Communications with Masked VQ-VAE Enabled Codebook [56.63571713657059]
本稿では,ロバストなエンドツーエンドのセマンティック通信システムにおいて,セマンティックノイズに対処するためのフレームワークを提案する。
セマンティックノイズに対処するため、重み付き対向トレーニングを開発し、トレーニングデータセットにセマンティックノイズを組み込む。
ノイズやタスク非関連の特徴を抑える機能重要モジュール (FIM) を開発した。
論文 参考訳(メタデータ) (2022-06-08T16:58:47Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
我々は、自己教師型音声表現学習の進歩に乗じて、人間の聴覚システムの最先端モデルを作成する。
これらの結果から,ヒト大脳皮質における音声処理の異なる段階に関連する情報の階層構造を,自己教師型モデルで効果的に把握できることが示唆された。
論文 参考訳(メタデータ) (2022-05-27T22:04:02Z) - Deep Neural Convolutive Matrix Factorization for Articulatory
Representation Decomposition [48.56414496900755]
この研究は、コンボリューティブスパース行列分解のニューラル実装を用いて、調音データを解釈可能なジェスチャーとジェスチャースコアに分解する。
音素認識実験も実施され、ジェスチャースコアが実際に音韻情報のコード化に成功していることが示された。
論文 参考訳(メタデータ) (2022-04-01T14:25:19Z) - Sparse Mixture of Local Experts for Efficient Speech Enhancement [19.645016575334786]
本稿では,専門的ニューラルネットワークの効率的なアンサンブルを通して,音声を聴覚的に認識するためのディープラーニング手法について検討する。
タスクを重複しないサブプロブレムに分割することで、計算複雑性を低減しつつ、デノナイジング性能を向上させることができる。
以上の結果から,微調整されたアンサンブルネットワークは,一般のネットワークの発声能力を上回ることができることがわかった。
論文 参考訳(メタデータ) (2020-05-16T23:23:22Z) - Simultaneous Denoising and Dereverberation Using Deep Embedding Features [64.58693911070228]
ディープ埋め込み特徴を用いた同時発声・発声同時学習法を提案する。
ノイズ発生段階では、DCネットワークを利用してノイズのないディープ埋込み特性を抽出する。
残響段階では、教師なしのK平均クラスタリングアルゴリズムの代わりに、別のニューラルネットワークを用いて無響音声を推定する。
論文 参考訳(メタデータ) (2020-04-06T06:34:01Z) - Untangling in Invariant Speech Recognition [17.996356271398295]
我々は、音声を認識するために訓練されたニューラルネットワークの中で、情報を解き放つ方法を研究する。
話者固有のニュアンス変動はネットワーク階層によって排除されるのに対し、タスク関連特性は後続の層で解消される。
計算の各段階におけるタスク関連特徴を効率よく抽出することにより,深部表現が時間的アンハングリングを行うことがわかった。
論文 参考訳(メタデータ) (2020-03-03T20:48:43Z) - Deep Speaker Embeddings for Far-Field Speaker Recognition on Short
Utterances [53.063441357826484]
深層話者埋め込みに基づく話者認識システムは,制御条件下での大幅な性能向上を実現している。
制御されていない雑音環境下での短い発話に対する話者検証は、最も困難で要求の高いタスクの1つである。
本稿では,a)環境騒音の有無による遠距離話者検証システムの品質向上,b)短時間発話におけるシステム品質劣化の低減という2つの目標を達成するためのアプローチを提案する。
論文 参考訳(メタデータ) (2020-02-14T13:34:33Z) - AudioMNIST: Exploring Explainable Artificial Intelligence for Audio
Analysis on a Simple Benchmark [12.034688724153044]
本稿では,音声領域におけるディープニューラルネットワークの時間後説明について検討する。
本稿では,3万個の英単語の音声サンプルからなるオープンソース音声データセットを提案する。
人間のユーザ研究において、視覚的説明よりも可聴説明の方が優れた解釈可能性を示す。
論文 参考訳(メタデータ) (2018-07-09T23:11:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。