Swing-up of quantum emitter population using detuned pulses
- URL: http://arxiv.org/abs/2111.10236v1
- Date: Fri, 19 Nov 2021 14:16:12 GMT
- Title: Swing-up of quantum emitter population using detuned pulses
- Authors: Thomas K. Bracht, Michael Cosacchi, Tim Seidelmann, Moritz Cygorek,
Alexei Vagov, V. Martin Axt, Tobias Heindel, Doris E. Reiter
- Abstract summary: We propose a coherent excitation scheme using off-resonant pulses.
This is overcome by using a frequency modulated pulse to swing up the excited state population.
We theoretically analyze the applicability of the scheme to a semiconductor quantum dot.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The controlled preparation of the excited state in a quantum emitter is a
prerequisite for its usage as single-photon sources - a key building block for
quantum technologies. In this paper we propose a coherent excitation scheme
using off-resonant pulses. In the usual Rabi scheme, these pulses would not
lead to a significant occupation. This is overcome by using a frequency
modulated pulse to swing up the excited state population. The same effect can
be obtained using two pulses with different strong detunings of the same sign.
We theoretically analyze the applicability of the scheme to a semiconductor
quantum dot. In this case the excitation is several meV below the band gap,
i.e., far away from the detection frequency allowing for easy spectral
filtering, and does not rely on any auxiliary particles such as phonons. Our
scheme has the potential to lead to the generation of close-to-ideal photons.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Multi-phonon Fock state heralding with single-photon detection [0.0]
We show how single-photon detection can herald selected multi-phonon Fock states, even in the presence of optical losses.
We also present an approach for quantum tomography of the heralded phonon states.
arXiv Detail & Related papers (2024-07-26T22:51:53Z) - Monitoring the energy of a cavity by observing the emission of a
repeatedly excited qubit [0.0]
We present an experiment that reaches single shot photocounting and number tracking owing to a cavity decay rate 4 orders of magnitude smaller than both the dispersive coupling rate and the qubit emission rate.
We observe quantum jumps by monitoring the photon number via the qubit fluorescence as photons leave the cavity one at a time.
arXiv Detail & Related papers (2024-02-07T17:38:00Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Cavity-enhanced excitation of a quantum dot in the picosecond regime [0.4721851604275367]
We investigate a scheme in which a single emitter, a semiconductor quantum dot, is embedded in a microcavity.
By linking experiment to theory, we show that the best population inversion is achieved with a laser pulse detuned from the quantum emitter.
arXiv Detail & Related papers (2023-01-31T17:47:57Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Collective Excitation of Spatio-Spectrally Distinct Quantum Dots Enabled
by Chirped Pulses [0.0]
We demonstrate the robustness of ARP for simultaneous excitation of the biexciton states of multiple quantum dots.
Being able to generate spatially multiplexed entangled photon pairs is a big step towards the scalability of photonic devices.
arXiv Detail & Related papers (2022-09-19T12:44:28Z) - Dynamical emission of phonon pairs in optomechanical systems [6.259066812918972]
Multiphonon state plays an important role in quantum information processing and quantum metrology.
We propose a scheme to realize dynamical emission of phonon pairs based on the technique of stimulated Raman adiabatic passage in a single cavity optomechanical system.
Our proposal can be extended to achieve an antibunched $n$-phonon emitter, which has potential applications for on-chip quantum communications.
arXiv Detail & Related papers (2021-12-26T09:45:56Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.