Collective Excitation of Spatio-Spectrally Distinct Quantum Dots Enabled
by Chirped Pulses
- URL: http://arxiv.org/abs/2209.08972v1
- Date: Mon, 19 Sep 2022 12:44:28 GMT
- Title: Collective Excitation of Spatio-Spectrally Distinct Quantum Dots Enabled
by Chirped Pulses
- Authors: Florian Kappe, Yusuf Karli, Thomas K. Bracht, Saimon Covre da Silva,
Tim Seidelmann, Vollrath Martin Axt, Armando Rastelli, Gregor Weihs, Doris E.
Reiter, and Vikas Remesh
- Abstract summary: We demonstrate the robustness of ARP for simultaneous excitation of the biexciton states of multiple quantum dots.
Being able to generate spatially multiplexed entangled photon pairs is a big step towards the scalability of photonic devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For a scalable photonic device producing entangled photons, it is desirable
to have multiple quantum emitters in an ensemble that can be collectively
excited, despite their spectral variability. For quantum dots, Rabi rotation,
the most popular method for resonant excitation, cannot assure a universal,
highly efficient excited state preparation, because of its sensitivity to the
excitation parameters. In contrast, Adiabatic Rapid Passage (ARP), relying on
chirped optical pulses, is immune to quantum dot spectral inhomogeneity. Here,
we advocate the robustness of ARP for simultaneous excitation of the biexciton
states of multiple quantum dots. For positive chirps, we find that there is
also regime of phonon advantage that widens the tolerance range of spectral
detunings. Using the same laser pulse we demonstrate the simultaneous
excitation of energetically and spatially distinct quantum dots. Being able to
generate spatially multiplexed entangled photon pairs is a big step towards the
scalability of photonic devices.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - SUPER excitation of quantum emitters is a multi-photon process [0.0]
swing-up of quantum emitter population scheme allows to populate the excited state of a quantum emitter with near-unity fidelity using two red-detuned laser pulses.
Our findings provide an unexpected physical interpretation of the SUPER scheme and unveil a new non-linear interaction between single emitters and multiple field modes.
arXiv Detail & Related papers (2024-06-25T13:28:02Z) - Nonreciprocal Bundle Emissions of Quantum Entangled Pairs [5.485473247089648]
spinning the resonator to induce the Sagnac effect, we can obtain nonreciprocal photon-phonon and photon-magnon super-Rabi oscillations.
Opening dissipative channels for such super-Rabi oscillations enables the realization of directional bundle emissions of entangled photon-phonon pairs and photon-magnon pairs.
This nonreciprocal emission is a flexible switch that can be controlled with precision, and simultaneous emissions of different entangled pairs can even emerge but in opposite directions by driving the resonator from different directions.
arXiv Detail & Related papers (2024-06-18T13:57:17Z) - Quantum Multiphoton Rabi Oscillations in Waveguide QED [0.0]
Future of quantum information processing hinges on chip-scale nanophotonics, specifically cavity QED and waveguide QED.
One of the foremost processes underpinning quantum photonic technologies is the phenomenon of Rabi oscillations.
We analytically explore the scattering dynamics of the photonic Fock state as it interfaces with a two-level emitter.
arXiv Detail & Related papers (2023-10-24T00:03:38Z) - Compact Chirped Fiber Bragg Gratings for Single-Photon Generation from
Quantum Dots [0.0]
We present a compact, robust, and high-efficiency alternative for chirped pulse excitation of solid-state quantum emitters.
Our simple plug-and-play module consists of chirped fiber Bragg gratings fabricated via femtosecond inscription.
arXiv Detail & Related papers (2023-06-20T16:02:28Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable phononic coupling in excitonic quantum emitters [6.510363316842893]
We report the deterministic creation of quantum emitters featuring highly tunable coupling between excitons and phonons.
The quantum emitters are formed in strain-induced quantum dots created in homobilayer semiconductor WSe2.
arXiv Detail & Related papers (2023-02-27T02:47:56Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.