Rotation-driven transition into coexistent Josephson modes in an
atomtronic dc-SQUID
- URL: http://arxiv.org/abs/2111.10254v1
- Date: Fri, 19 Nov 2021 14:47:54 GMT
- Title: Rotation-driven transition into coexistent Josephson modes in an
atomtronic dc-SQUID
- Authors: D. M. Jezek and H. M. Cataldo
- Abstract summary: We show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system.
In particular, we show that within a determined rotation frequency interval, a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By means of a two-mode model, we show that transitions to different arrays of
coexistent regimes in the phase space can be attained by rotating a double-well
system, which consists of a toroidal condensate with two diametrically placed
barriers. Such a configuration corresponds to the atomtronic counterpart of the
well-known direct-current superconducting quantum interference device. Due to
the phase gradient experimented by the on-site localized functions when the
system is subject to rotation, a phase difference appears on each junction in
order to satisfy the quantization of the velocity field around the torus. We
demonstrate that such a phase can produce a significant change on the relative
values of different types of hopping parameters. In particular, we show that
within a determined rotation frequency interval, a hopping parameter, usually
disregarded in nonrotating systems, turns out to rule the dynamics. At the
limits of such a frequency interval, bifurcations of the stationary points
occur, which substantially change the phase space portrait that describes the
orbits of the macroscopic canonical conjugate variables. We analyze the
emerging dynamics that combines the $0$ and $\pi$ Josephson modes, and evaluate
the small-oscillation time-periods of such orbits at the frequency range where
each mode survives. All the findings predicted by the model are confirmed by
Gross-Pitaevskii simulations.
Related papers
- Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Transient dynamical phase diagram of the spin-boson model [0.0]
We investigate the real-time dynamics of the sub-Ohmic spin-boson model across a broad range of coupling strengths.
We extract signatures of the zero-temperature quantum phase transition between localized and delocalized states.
We identify and quantitatively analyze two competing mechanisms for the crossover between coherent oscillations and incoherent decay.
arXiv Detail & Related papers (2024-02-28T18:52:23Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
We identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity.
We show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse.
In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic, sparse circuits.
arXiv Detail & Related papers (2023-04-19T17:37:10Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z) - Dynamical crossover in the transient quench dynamics of short-range
transverse field Ising models [4.16271611433618]
We study the transient regimes of non-equilibrium processes probed by single-site observables that is magnetization per site.
The decay rates of time-dependent and single-site observables exhibit a dynamical crossover that separates two dynamical regions.
Our results reveal that scaling law exponent in short times at the close vicinity of the dynamical crossover is significantly different than the one predicted by analytical theory.
arXiv Detail & Related papers (2020-04-26T04:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.