A 3D 2D convolutional Neural Network Model for Hyperspectral Image
Classification
- URL: http://arxiv.org/abs/2111.10293v1
- Date: Fri, 19 Nov 2021 16:09:25 GMT
- Title: A 3D 2D convolutional Neural Network Model for Hyperspectral Image
Classification
- Authors: Jiaxin Cao and Xiaoyan Li
- Abstract summary: In the proposed SEHybridSN model, a dense block was used to reuse shallow feature.
depth separable convolutional layers were used to discriminate the spatial information.
Experiment results indicate that our proposed model learn more discriminative spatial spectral features using very few training data.
- Score: 4.213427823201119
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the proposed SEHybridSN model, a dense block was used to reuse shallow
feature and aimed at better exploiting hierarchical spatial spectral feature.
Subsequent depth separable convolutional layers were used to discriminate the
spatial information. Further refinement of spatial spectral features was
realized by the channel attention method, which were performed behind every 3D
convolutional layer and every 2D convolutional layer. Experiment results
indicate that our proposed model learn more discriminative spatial spectral
features using very few training data. SEHybridSN using only 0.05 and 0.01
labeled data for training, a very satisfactory performance is obtained.
Related papers
- EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.
We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
It is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction.
We propose a method that seamlessly merge 3DGS with the learning of neural SDFs.
Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
arXiv Detail & Related papers (2024-10-18T05:48:06Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS.
In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss.
Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation [45.582869951581785]
Implicit Gaussian Splatting (IGS) is an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings.
We introduce a level-based progressive training scheme, which incorporates explicit spatial regularization.
Our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity.
arXiv Detail & Related papers (2024-08-19T14:34:17Z) - Diffusion-SS3D: Diffusion Model for Semi-supervised 3D Object Detection [77.23918785277404]
We present Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection.
Specifically, we include noises to produce corrupted 3D object size and class label, distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs.
We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods.
arXiv Detail & Related papers (2023-12-05T18:54:03Z) - Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retinal OCT Images with Full
and Sparse Annotations [32.69359482975795]
This work presents a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) to obtain continuous 3D retinal layer surfaces from OCT volumes.
Experiments on a synthetic dataset and three public clinical datasets show that our framework can effectively align the B-scans for potential motion correction.
arXiv Detail & Related papers (2023-12-04T08:32:31Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
We present StableDreamer, a methodology incorporating three advances.
First, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss.
Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition.
arXiv Detail & Related papers (2023-12-02T02:27:58Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - Shape Prior Non-Uniform Sampling Guided Real-time Stereo 3D Object
Detection [59.765645791588454]
Recently introduced RTS3D builds an efficient 4D Feature-Consistency Embedding space for the intermediate representation of object without depth supervision.
We propose a shape prior non-uniform sampling strategy that performs dense sampling in outer region and sparse sampling in inner region.
Our proposed method has 2.57% improvement on AP3d almost without extra network parameters.
arXiv Detail & Related papers (2021-06-18T09:14:55Z) - Hyperspectral Image Classification: Artifacts of Dimension Reduction on
Hybrid CNN [1.2875323263074796]
2D and 3D CNN models have proved highly efficient in exploiting the spatial and spectral information of Hyperspectral Images.
This work proposed a lightweight CNN (3D followed by 2D-CNN) model which significantly reduces the computational cost.
arXiv Detail & Related papers (2021-01-25T18:43:57Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.