論文の概要: Data Excellence for AI: Why Should You Care
- arxiv url: http://arxiv.org/abs/2111.10391v1
- Date: Fri, 19 Nov 2021 19:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-26 08:03:46.216702
- Title: Data Excellence for AI: Why Should You Care
- Title(参考訳): AIのためのデータ卓越性:なぜ注意すべきなのか
- Authors: Lora Aroyo, Matthew Lease, Praveen Paritosh, Mike Schaekermann
- Abstract要約: ベンチマークデータセットは、モデルが存在し、運用される世界全体を定義する。
もし「データが新しい石油である」ならば、データ自体がより効率的な使用のために最適化されるような精製工場の作業は依然として欠落しています。
- 参考スコア(独自算出の注目度): 9.421161233914251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The efficacy of machine learning (ML) models depends on both algorithms and
data. Training data defines what we want our models to learn, and testing data
provides the means by which their empirical progress is measured. Benchmark
datasets define the entire world within which models exist and operate, yet
research continues to focus on critiquing and improving the algorithmic aspect
of the models rather than critiquing and improving the data with which our
models operate. If "data is the new oil," we are still missing work on the
refineries by which the data itself could be optimized for more effective use.
- Abstract(参考訳): 機械学習(ML)モデルの有効性はアルゴリズムとデータの両方に依存する。
トレーニングデータは、モデルが学習したいものを定義し、テストデータは、経験的な進歩を測定する手段を提供します。
ベンチマークデータセットは、モデルの存在と運用に関する世界全体を定義しますが、研究は、私たちのモデルが運用するデータの評価と改善よりも、モデルのアルゴリズム的な側面の批判と改善にフォーカスし続けています。
もし「データが新しい石油」なら、データ自体をより効果的に利用するために最適化できる製油所の作業が不足しています。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - When to Trust Your Data: Enhancing Dyna-Style Model-Based Reinforcement Learning With Data Filter [7.886307329450978]
ダイナスタイルのアルゴリズムは、推定環境モデルからのシミュレーションデータを用いてモデルフリートレーニングを加速することにより、2つのアプローチを組み合わせる。
これまでの作業では、モデルアンサンブルを使用したり、実際の環境から収集されたデータで推定されたモデルを事前訓練することで、この問題に対処している。
本研究では,実環境において収集したデータから大きく分岐する推定モデルからシミュレーションデータを除去するアウト・オブ・ディストリビューションデータフィルタを提案する。
論文 参考訳(メタデータ) (2024-10-16T01:49:03Z) - Certain and Approximately Certain Models for Statistical Learning [4.318959672085627]
特定のトレーニングデータや対象モデルに対して,不足値を持つデータから,正確なモデルを直接学習することが可能であることを示す。
我々は、理論的に保証された効率的なアルゴリズムを構築し、この必要条件を確認し、計算が不要な場合に正確なモデルを返す。
論文 参考訳(メタデータ) (2024-02-27T22:49:33Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z) - RLBoost: Boosting Supervised Models using Deep Reinforcement Learning [0.0]
RLBoostは、深層強化学習戦略を用いて、特定のデータセットを評価し、新しいデータの品質を推定できるモデルを得るアルゴリズムである。
論文の結果から, このモデルでは, LOO, DataShapley, DVRLなどの最先端アルゴリズムよりも, より優れた, より安定した結果が得られることが示された。
論文 参考訳(メタデータ) (2023-05-23T14:38:33Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Fix your Models by Fixing your Datasets [0.6058427379240697]
現在の機械学習ツールは、データ品質を改善するための合理化されたプロセスを欠いている。
そこで,本研究では,データセットにノイズや誤認のあるサンプルを見つけるための体系的枠組みを提案する。
2つのFortune 500企業のプライベートエンタープライズデータセットと同様に、当社のフレームワークの有効性を公開してみます。
論文 参考訳(メタデータ) (2021-12-15T02:41:50Z) - Exploring the Efficacy of Automatically Generated Counterfactuals for
Sentiment Analysis [17.811597734603144]
本稿では,データ拡張と説明のためのデファクトデータの自動生成手法を提案する。
いくつかの異なるデータセットに対する包括的な評価と、さまざまな最先端ベンチマークの使用により、我々のアプローチがモデルパフォーマンスを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-06-29T10:27:01Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。