MURAL: An Unsupervised Random Forest-Based Embedding for Electronic
Health Record Data
- URL: http://arxiv.org/abs/2111.10452v1
- Date: Fri, 19 Nov 2021 22:02:21 GMT
- Title: MURAL: An Unsupervised Random Forest-Based Embedding for Electronic
Health Record Data
- Authors: Michal Gerasimiuk, Dennis Shung, Alexander Tong, Adrian Stanley,
Michael Schultz, Jeffrey Ngu, Loren Laine, Guy Wolf, Smita Krishnaswamy
- Abstract summary: We present an unsupervised random forest for representing data with disparate variable types.
MURAL forests consist of a set of decision trees where node-splitting variables are chosen at random.
We show that using our approach, we can visualize and classify data more accurately than competing approaches.
- Score: 59.26381272149325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge in embedding or visualizing clinical patient data is the
heterogeneity of variable types including continuous lab values, categorical
diagnostic codes, as well as missing or incomplete data. In particular, in EHR
data, some variables are {\em missing not at random (MNAR)} but deliberately
not collected and thus are a source of information. For example, lab tests may
be deemed necessary for some patients on the basis of suspected diagnosis, but
not for others. Here we present the MURAL forest -- an unsupervised random
forest for representing data with disparate variable types (e.g., categorical,
continuous, MNAR). MURAL forests consist of a set of decision trees where
node-splitting variables are chosen at random, such that the marginal entropy
of all other variables is minimized by the split. This allows us to also split
on MNAR variables and discrete variables in a way that is consistent with the
continuous variables. The end goal is to learn the MURAL embedding of patients
using average tree distances between those patients. These distances can be fed
to nonlinear dimensionality reduction method like PHATE to derive visualizable
embeddings. While such methods are ubiquitous in continuous-valued datasets
(like single cell RNA-sequencing) they have not been used extensively in mixed
variable data. We showcase the use of our method on one artificial and two
clinical datasets. We show that using our approach, we can visualize and
classify data more accurately than competing approaches. Finally, we show that
MURAL can also be used to compare cohorts of patients via the recently proposed
tree-sliced Wasserstein distances.
Related papers
- Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments [67.80453452949303]
Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine.
Here, we focus on the widespread setting where the observational data come from multiple environments.
We propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models.
arXiv Detail & Related papers (2024-06-04T16:31:43Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Time-dependent Iterative Imputation for Multivariate Longitudinal
Clinical Data [0.0]
Time-Dependent Iterative imputation offers a practical solution for imputing time-series data.
When applied to a cohort consisting of more than 500,000 patient observations, our approach outperformed state-of-the-art imputation methods.
arXiv Detail & Related papers (2023-04-16T16:10:49Z) - A Penalty Approach for Normalizing Feature Distributions to Build
Confounder-Free Models [11.818509522227565]
MetaData Normalization (MDN) estimates the linear relationship between the metadata and each feature based on a non-trainable closed-form solution.
We extend the MDN method by applying a Penalty approach (referred to as PDMN)
We show improvement in model accuracy and greater independence from confounders using PMDN over MDN in a synthetic experiment and a multi-label, multi-site dataset of magnetic resonance images (MRIs)
arXiv Detail & Related papers (2022-07-11T04:02:12Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
This paper proposes to model medical data records with heterogeneous data types and bursty missing data using sequential variational autoencoders (VAEs)
We show that Shi-VAE achieves the best performance in terms of using both metrics, with lower computational complexity than the GP-VAE model.
arXiv Detail & Related papers (2021-03-12T10:59:26Z) - Diffusion Earth Mover's Distance and Distribution Embeddings [61.49248071384122]
Diffusion can be computed in $tildeO(n)$ time and is more accurate than similarly fast algorithms such as tree-baseds.
We show Diffusion is fully differentiable, making it amenable to future uses in gradient-descent frameworks such as deep neural networks.
arXiv Detail & Related papers (2021-02-25T13:18:32Z) - Federated Deep AUC Maximization for Heterogeneous Data with a Constant
Communication Complexity [77.78624443410216]
We propose improved FDAM algorithms for detecting heterogeneous chest data.
A result of this paper is that the communication of the proposed algorithm is strongly independent of the number of machines and also independent of the accuracy level.
Experiments have demonstrated the effectiveness of our FDAM algorithm on benchmark datasets and on medical chest Xray images from different organizations.
arXiv Detail & Related papers (2021-02-09T04:05:19Z) - VAEs in the Presence of Missing Data [6.397263087026567]
We develop a novel latent variable model of a corruption process which generates missing data, and derive a corresponding tractable evidence lower bound (ELBO)
Our model is straightforward to implement, can handle both missing completely at random (MCAR) and missing not at random (MNAR) data, scales to high dimensional inputs and gives both the VAE encoder and decoder access to indicator variables for whether a data element is missing or not.
On the MNIST and SVHN datasets we demonstrate improved marginal log-likelihood of observed data and better missing data imputation, compared to existing approaches.
arXiv Detail & Related papers (2020-06-09T14:40:00Z) - Fr\'echet random forests for metric space valued regression with non
euclidean predictors [0.0]
We introduce Fr'echet trees and Fr'echet random forests, which allow to handle data for which input and output variables take values in general metric spaces.
A consistency theorem for Fr'echet regressogram predictor using data-driven partitions is given and applied to Fr'echet purely uniformly random trees.
arXiv Detail & Related papers (2019-06-04T22:07:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.