Low-Discrepancy Points via Energetic Variational Inference
- URL: http://arxiv.org/abs/2111.10722v1
- Date: Sun, 21 Nov 2021 03:09:07 GMT
- Title: Low-Discrepancy Points via Energetic Variational Inference
- Authors: Yindong Chen, Yiwei Wang, Lulu Kang, Chun Liu
- Abstract summary: We propose a deterministic variational inference approach and generate low-discrepancy points by minimizing the kernel discrepancy.
We name the resulting algorithm EVI-MMD and demonstrate it through examples in which the target distribution is fully specified.
Its performances are satisfactory compared to alternative methods in the applications of distribution approximation, numerical integration, and generative learning.
- Score: 5.936959130012709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a deterministic variational inference approach and
generate low-discrepancy points by minimizing the kernel discrepancy, also
known as the Maximum Mean Discrepancy or MMD. Based on the general energetic
variational inference framework by Wang et. al. (2021), minimizing the kernel
discrepancy is transformed to solving a dynamic ODE system via the explicit
Euler scheme. We name the resulting algorithm EVI-MMD and demonstrate it
through examples in which the target distribution is fully specified, partially
specified up to the normalizing constant, and empirically known in the form of
training data. Its performances are satisfactory compared to alternative
methods in the applications of distribution approximation, numerical
integration, and generative learning. The EVI-MMD algorithm overcomes the
bottleneck of the existing MMD-descent algorithms, which are mostly applicable
to two-sample problems. Algorithms with more sophisticated structures and
potential advantages can be developed under the EVI framework.
Related papers
- An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models [86.05414211113627]
We tackle the problem of system identification, where we select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data.
We propose a flexible and computationally tractable methodology that is compatible with any system and parametric family of models.
arXiv Detail & Related papers (2025-01-28T01:57:51Z) - Go With the Flow: Fast Diffusion for Gaussian Mixture Models [13.03355083378673]
Schr"odinger Bridges (SB) are diffusion processes that steer, in finite time, a given initial distribution to another final one while minimizing a suitable cost functional.
We propose latentmetrization of a set of SB policies for steering a system from one distribution to another.
We showcase the potential this approach in low-to-dimensional problems such as image-to-image translation in the space of an autoencoder.
arXiv Detail & Related papers (2024-12-12T08:40:22Z) - Annealed Stein Variational Gradient Descent for Improved Uncertainty Estimation in Full-Waveform Inversion [25.714206592953545]
Variational Inference (VI) provides an approximate solution to the posterior distribution in the form of a parametric or non-parametric proposal distribution.
This study aims to improve the performance of VI within the context of Full-Waveform Inversion.
arXiv Detail & Related papers (2024-10-17T06:15:26Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources.
We characterize the optimal parametric solutions.
We provide sufficient conditions on the distortion and the perception constraints.
arXiv Detail & Related papers (2024-08-27T12:50:12Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Provable Multi-instance Deep AUC Maximization with Stochastic Pooling [39.46116380220933]
This paper considers a novel application of deep AUC (DAM) for multi-instance learning (MIL)
A single class label is assigned to a bag of instances (e.g., multiple 2D slices of a scan for a patient)
arXiv Detail & Related papers (2023-05-14T01:29:56Z) - On Accelerating Diffusion-Based Sampling Process via Improved
Integration Approximation [12.882586878998579]
A popular approach to sample a diffusion-based generative model is to solve an ordinary differential equation (ODE)
We consider accelerating several popular ODE-based sampling processes by optimizing certain coefficients via improved integration approximation (IIA)
We show that considerably better FID scores can be achieved by using IIA-EDM, IIA-DDIM, and IIA-DPM-r than the original counterparts.
arXiv Detail & Related papers (2023-04-22T06:06:28Z) - Efficient Alternating Minimization Solvers for Wyner Multi-View
Unsupervised Learning [0.0]
We propose two novel formulations that enable the development of computational efficient solvers based the alternating principle.
The proposed solvers offer computational efficiency, theoretical convergence guarantees, local minima complexity with the number of views, and exceptional accuracy as compared with the state-of-the-art techniques.
arXiv Detail & Related papers (2023-03-28T10:17:51Z) - Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both
Worlds in Stochastic and Deterministic Environments [48.96971760679639]
We study variance-dependent regret bounds for Markov decision processes (MDPs)
We propose two new environment norms to characterize the fine-grained variance properties of the environment.
For model-based methods, we design a variant of the MVP algorithm.
In particular, this bound is simultaneously minimax optimal for both and deterministic MDPs.
arXiv Detail & Related papers (2023-01-31T06:54:06Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Robust Multi-view Registration of Point Sets with Laplacian Mixture
Model [25.865100974015412]
We propose a novel probabilistic generative method to align multiple point sets based on the heavy-tailed Laplacian distribution.
We demonstrate the advantages of our method by comparing it with representative state-of-the-art approaches on benchmark challenging data sets.
arXiv Detail & Related papers (2021-10-26T14:49:09Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
We consider the problem of jointly benchmarking and clustering of tensors.
We propose an efficient high-maximization algorithm that converges geometrically to a neighborhood that is within statistical precision.
arXiv Detail & Related papers (2021-04-15T21:06:16Z) - The EM Perspective of Directional Mean Shift Algorithm [3.60425753550939]
The directional mean shift (DMS) algorithm is a nonparametric method for pursuing local modes of densities defined by kernel density estimators on the unit hypersphere.
We show that any DMS can be viewed as a generalized Expectation-Maximization (EM) algorithm.
arXiv Detail & Related papers (2021-01-25T13:17:12Z) - Efficient Consensus Model based on Proximal Gradient Method applied to
Convolutional Sparse Problems [2.335152769484957]
We derive and detail a theoretical analysis of an efficient consensus algorithm based on gradient proximal (PG) approach.
The proposed algorithm is also applied to another particular convolutional problem for the anomaly detection task.
arXiv Detail & Related papers (2020-11-19T20:52:48Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.