Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models
- URL: http://arxiv.org/abs/2408.11145v1
- Date: Tue, 20 Aug 2024 19:06:02 GMT
- Title: Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models
- Authors: Yuanzhe Wang, Alexandre M. Tartakovsky,
- Abstract summary: We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
- Score: 50.90868087591973
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models, including operator learning models. The proposed method accounts for uncertainty in the observations and PDE and surrogate models. First, we use the surrogate model to formulate a minimization problem in the reduced space for the maximum a posteriori (MAP) inverse solution. Then, we randomize the MAP objective function and obtain samples of the posterior distribution by minimizing different realizations of the objective function. We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation with an unknown space-dependent diffusion coefficient. Among other problems, this equation describes groundwater flow in an unconfined aquifer. Depending on the training dataset and ensemble sizes, the proposed method provides similar or more descriptive posteriors of the parameters and states than the iterative ensemble smoother method. Deep ensembling underestimates uncertainty and provides less informative posteriors than the other two methods.
Related papers
- A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions.
The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
arXiv Detail & Related papers (2024-10-28T13:42:27Z) - Amortized Posterior Sampling with Diffusion Prior Distillation [55.03585818289934]
We propose a variational inference approach to sample from the posterior distribution for solving inverse problems.
We show that our method is applicable to standard signals in Euclidean space, as well as signals on manifold.
arXiv Detail & Related papers (2024-07-25T09:53:12Z) - A local squared Wasserstein-2 method for efficient reconstruction of models with uncertainty [0.0]
We propose a local squared Wasserstein-2 (W_2) method to solve the inverse problem of reconstructing models with uncertain latent variables or parameters.
A key advantage of our approach is that it does not require prior information on the distribution of the latent variables or parameters in the underlying models.
arXiv Detail & Related papers (2024-06-10T22:15:55Z) - Stochastic full waveform inversion with deep generative prior for uncertainty quantification [0.0]
Full Waveform Inversion (FWI) involves solving a nonlinear and often non-unique inverse problem.
FWI presents challenges such as local minima trapping and inadequate handling of inherent uncertainties.
We propose leveraging deep generative models as the prior distribution of geophysical parameters for Bayesian inversion.
arXiv Detail & Related papers (2024-06-07T11:44:50Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - On stable wrapper-based parameter selection method for efficient
ANN-based data-driven modeling of turbulent flows [2.0731505001992323]
This study aims to analyze and develop a reduced modeling approach based on artificial neural network (ANN) and wrapper methods.
It is found that the gradient-based subset selection to minimize the total derivative loss results in improved consistency-over-trials.
For the reduced turbulent Prandtl number model, the gradient-based subset selection improves the prediction in the validation case over the other methods.
arXiv Detail & Related papers (2023-08-04T08:26:56Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - VI-DGP: A variational inference method with deep generative prior for
solving high-dimensional inverse problems [0.7734726150561089]
We propose a novel approximation method for estimating the high-dimensional posterior distribution.
This approach leverages a deep generative model to learn a prior model capable of generating spatially-varying parameters.
The proposed method can be fully implemented in an automatic differentiation manner.
arXiv Detail & Related papers (2023-02-22T06:48:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.