3D Visual Tracking Framework with Deep Learning for Asteroid Exploration
- URL: http://arxiv.org/abs/2111.10737v1
- Date: Sun, 21 Nov 2021 04:14:45 GMT
- Title: 3D Visual Tracking Framework with Deep Learning for Asteroid Exploration
- Authors: Dong Zhou, Gunaghui Sun, Xiaopeng Hong
- Abstract summary: In this paper, we focus on the studied accurate and real-time method for 3D tracking.
A new large-scale 3D asteroid tracking dataset is presented, including binocular video sequences, depth maps, and point clouds of diverse asteroids.
We propose a deep-learning based 3D tracking framework, named as Track3D, which involves 2D monocular tracker and a novel light-weight amodal axis-aligned bounding-box network, A3BoxNet.
- Score: 22.808962211830675
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D visual tracking is significant to deep space exploration programs, which
can guarantee spacecraft to flexibly approach the target. In this paper, we
focus on the studied accurate and real-time method for 3D tracking. Considering
the fact that there are almost no public dataset for this topic, A new
large-scale 3D asteroid tracking dataset is presented, including binocular
video sequences, depth maps, and point clouds of diverse asteroids with various
shapes and textures. Benefitting from the power and convenience of simulation
platform, all the 2D and 3D annotations are automatically generated. Meanwhile,
we propose a deep-learning based 3D tracking framework, named as Track3D, which
involves 2D monocular tracker and a novel light-weight amodal axis-aligned
bounding-box network, A3BoxNet. The evaluation results demonstrate that Track3D
achieves state-of-the-art 3D tracking performance in both accuracy and
precision, comparing to a baseline algorithm. Moreover, our framework has great
generalization ability to 2D monocular tracking performance.
Related papers
- TAPVid-3D: A Benchmark for Tracking Any Point in 3D [63.060421798990845]
We introduce a new benchmark, TAPVid-3D, for evaluating the task of Tracking Any Point in 3D.
This benchmark will serve as a guidepost to improve our ability to understand precise 3D motion and surface deformation from monocular video.
arXiv Detail & Related papers (2024-07-08T13:28:47Z) - SpatialTracker: Tracking Any 2D Pixels in 3D Space [71.58016288648447]
We propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection.
Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators.
Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts.
arXiv Detail & Related papers (2024-04-05T17:59:25Z) - Time3D: End-to-End Joint Monocular 3D Object Detection and Tracking for
Autonomous Driving [3.8073142980733]
We propose jointly training 3D detection and 3D tracking from only monocular videos in an end-to-end manner.
Time3D achieves 21.4% AMOTA, 13.6% AMOTP on the nuScenes 3D tracking benchmark, surpassing all published competitors.
arXiv Detail & Related papers (2022-05-30T06:41:10Z) - From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection [101.20784125067559]
We propose a new architecture, namely Hallucinated Hollow-3D R-CNN, to address the problem of 3D object detection.
In our approach, we first extract the multi-view features by sequentially projecting the point clouds into the perspective view and the bird-eye view.
The 3D objects are detected via a box refinement module with a novel Hierarchical Voxel RoI Pooling operation.
arXiv Detail & Related papers (2021-07-30T02:00:06Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
We propose frustum-aware geometric reasoning (FGR) to detect vehicles in point clouds without any 3D annotations.
Our method consists of two stages: coarse 3D segmentation and 3D bounding box estimation.
It is able to accurately detect objects in 3D space with only 2D bounding boxes and sparse point clouds.
arXiv Detail & Related papers (2021-05-17T07:29:55Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - F-Siamese Tracker: A Frustum-based Double Siamese Network for 3D Single
Object Tracking [12.644452175343059]
A main challenge in 3D single object tracking is how to reduce search space for generating appropriate 3D candidates.
Instead of relying on 3D proposals, we produce 2D region proposals which are then extruded into 3D viewing frustums.
We perform an online accuracy validation on the 3D frustum to generate refined point cloud searching space.
arXiv Detail & Related papers (2020-10-22T08:01:17Z) - DeepTracking-Net: 3D Tracking with Unsupervised Learning of Continuous
Flow [12.690471276907445]
This paper deals with the problem of 3D tracking, i.e., to find dense correspondences in a sequence of time-varying 3D shapes.
We propose a novel unsupervised 3D shape framework named DeepTracking-Net, which uses deep neural networks (DNNs) as auxiliary functions.
In addition, we prepare a new synthetic 3D data, named SynMotions, to the 3D tracking and recognition community.
arXiv Detail & Related papers (2020-06-24T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.