Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability
- URL: http://arxiv.org/abs/2111.10752v1
- Date: Sun, 21 Nov 2021 06:33:27 GMT
- Title: Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability
- Authors: Yifeng Xiong, Jiadong Lin, Min Zhang, John E. Hopcroft, Kun He
- Abstract summary: Black-box adversarial attacks can be transferred from one model to another.
In this work, we propose a novel ensemble attack method called the variance reduced ensemble attack.
Empirical results on the standard ImageNet demonstrate that the proposed method could boost the adversarial transferability and outperforms existing ensemble attacks significantly.
- Score: 20.255708227671573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The black-box adversarial attack has attracted impressive attention for its
practical use in the field of deep learning security, meanwhile, it is very
challenging as there is no access to the network architecture or internal
weights of the target model. Based on the hypothesis that if an example remains
adversarial for multiple models, then it is more likely to transfer the attack
capability to other models, the ensemble-based adversarial attack methods are
efficient and widely used for black-box attacks. However, ways of ensemble
attack are rather less investigated, and existing ensemble attacks simply fuse
the outputs of all the models evenly. In this work, we treat the iterative
ensemble attack as a stochastic gradient descent optimization process, in which
the variance of the gradients on different models may lead to poor local
optima. To this end, we propose a novel attack method called the stochastic
variance reduced ensemble (SVRE) attack, which could reduce the gradient
variance of the ensemble models and take full advantage of the ensemble attack.
Empirical results on the standard ImageNet dataset demonstrate that the
proposed method could boost the adversarial transferability and outperforms
existing ensemble attacks significantly.
Related papers
- Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Understanding the Robustness of Randomized Feature Defense Against
Query-Based Adversarial Attacks [23.010308600769545]
Deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify.
We propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time.
Our method effectively enhances the model's resilience against both score-based and decision-based black-box attacks.
arXiv Detail & Related papers (2023-10-01T03:53:23Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial
Transferability [26.39964737311377]
We propose an adaptive ensemble attack, dubbed AdaEA, to adaptively control the fusion of the outputs from each model.
We achieve considerable improvement over the existing ensemble attacks on various datasets.
arXiv Detail & Related papers (2023-08-05T15:12:36Z) - Transferable Attack for Semantic Segmentation [59.17710830038692]
adversarial attacks, and observe that the adversarial examples generated from a source model fail to attack the target models.
We propose an ensemble attack for semantic segmentation to achieve more effective attacks with higher transferability.
arXiv Detail & Related papers (2023-07-31T11:05:55Z) - Enhancing Targeted Attack Transferability via Diversified Weight Pruning [0.3222802562733786]
Malicious attackers can generate targeted adversarial examples by imposing human-imperceptible noise on images.
With cross-model transferable adversarial examples, the vulnerability of neural networks remains even if the model information is kept secret from the attacker.
Recent studies have shown the effectiveness of ensemble-based methods in generating transferable adversarial examples.
arXiv Detail & Related papers (2022-08-18T07:25:48Z) - Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations [70.05004034081377]
We first propose a novel method for generating composite adversarial examples.
Our method can find the optimal attack composition by utilizing component-wise projected gradient descent.
We then propose generalized adversarial training (GAT) to extend model robustness from $ell_p$-ball to composite semantic perturbations.
arXiv Detail & Related papers (2022-02-09T02:41:56Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting.
We propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes.
Our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods.
arXiv Detail & Related papers (2021-07-05T06:17:47Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
adversarial examples have been long considered a real threat to machine learning models.
We propose an alternative deployment-based defense paradigm that goes beyond the traditional white-box and black-box threat models.
arXiv Detail & Related papers (2021-02-09T20:07:13Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.