Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations
- URL: http://arxiv.org/abs/2202.04235v3
- Date: Tue, 21 Mar 2023 19:38:39 GMT
- Title: Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations
- Authors: Lei Hsiung, Yun-Yun Tsai, Pin-Yu Chen, Tsung-Yi Ho
- Abstract summary: We first propose a novel method for generating composite adversarial examples.
Our method can find the optimal attack composition by utilizing component-wise projected gradient descent.
We then propose generalized adversarial training (GAT) to extend model robustness from $ell_p$-ball to composite semantic perturbations.
- Score: 70.05004034081377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model robustness against adversarial examples of single perturbation type
such as the $\ell_{p}$-norm has been widely studied, yet its generalization to
more realistic scenarios involving multiple semantic perturbations and their
composition remains largely unexplored. In this paper, we first propose a novel
method for generating composite adversarial examples. Our method can find the
optimal attack composition by utilizing component-wise projected gradient
descent and automatic attack-order scheduling. We then propose generalized
adversarial training (GAT) to extend model robustness from $\ell_{p}$-ball to
composite semantic perturbations, such as the combination of Hue, Saturation,
Brightness, Contrast, and Rotation. Results obtained using ImageNet and
CIFAR-10 datasets indicate that GAT can be robust not only to all the tested
types of a single attack, but also to any combination of such attacks. GAT also
outperforms baseline $\ell_{\infty}$-norm bounded adversarial training
approaches by a significant margin.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
This paper demonstrates how composite adversarial attack (CAA) affects the resulting image.
It provides real-time inferences of different models, which will facilitate users' configuration of the parameters of the attack level.
A leaderboard to benchmark adversarial robustness against CAA is also introduced.
arXiv Detail & Related papers (2022-07-16T01:08:44Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
Adversarial training (AT) is considered to be one of the most reliable defenses against adversarial attacks.
Recent works show generalization improvement with adversarial samples under novel threat models.
We propose a novel threat model called Joint Space Threat Model (JSTM)
Under JSTM, we develop novel adversarial attacks and defenses.
arXiv Detail & Related papers (2021-12-12T21:08:14Z) - PARL: Enhancing Diversity of Ensemble Networks to Resist Adversarial
Attacks via Pairwise Adversarially Robust Loss Function [13.417003144007156]
adversarial attacks tend to rely on the principle of transferability.
Ensemble methods against adversarial attacks demonstrate that an adversarial example is less likely to mislead multiple classifiers.
Recent ensemble methods have either been shown to be vulnerable to stronger adversaries or shown to lack an end-to-end evaluation.
arXiv Detail & Related papers (2021-12-09T14:26:13Z) - Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability [20.255708227671573]
Black-box adversarial attacks can be transferred from one model to another.
In this work, we propose a novel ensemble attack method called the variance reduced ensemble attack.
Empirical results on the standard ImageNet demonstrate that the proposed method could boost the adversarial transferability and outperforms existing ensemble attacks significantly.
arXiv Detail & Related papers (2021-11-21T06:33:27Z) - Robustness-via-Synthesis: Robust Training with Generative Adversarial
Perturbations [10.140147080535224]
Adversarial training with first-order attacks has been one of the most effective defenses against adversarial perturbations to this day.
This study presents a robust training algorithm where the adversarial perturbations are automatically synthesized from a random vector using a generator network.
Experimental results show that the proposed approach attains comparable robustness with various gradient-based and generative robust training techniques.
arXiv Detail & Related papers (2021-08-22T13:15:24Z) - Generating Structured Adversarial Attacks Using Frank-Wolfe Method [7.84752424025677]
Constraining adversarial search with different norms results in disparately structured adversarial examples.
structured adversarial examples can be used for adversarial regularization of models to make models more robust or improve their performance on datasets which are structurally different.
arXiv Detail & Related papers (2021-02-15T06:36:50Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.