Design of an Novel Spectrum Sensing Scheme Based on Long Short-Term
Memory and Experimental Validation
- URL: http://arxiv.org/abs/2111.10769v1
- Date: Sun, 21 Nov 2021 08:51:48 GMT
- Title: Design of an Novel Spectrum Sensing Scheme Based on Long Short-Term
Memory and Experimental Validation
- Authors: Nupur Choudhury, Kandarpa Kumar Sarma, Chinmoy Kalita, Aradhana Misra
- Abstract summary: We propose an approach of spectrum sensing based on long short term memory (LSTM) which is a critical element of deep learning networks (DLN)
The proposed sensing technique is validated with the help of an empirical testbed setup using Adalm Pluto.
- Score: 0.7349727826230862
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spectrum sensing allows cognitive radio systems to detect relevant signals in
despite the presence of severe interference. Most of the existing spectrum
sensing techniques use a particular signal-noise model with certain assumptions
and derive certain detection performance. To deal with this uncertainty,
learning based approaches are being adopted and more recently deep learning
based tools have become popular. Here, we propose an approach of spectrum
sensing which is based on long short term memory (LSTM) which is a critical
element of deep learning networks (DLN). Use of LSTM facilitates implicit
feature learning from spectrum data. The DLN is trained using several features
and the performance of the proposed sensing technique is validated with the
help of an empirical testbed setup using Adalm Pluto. The testbed is trained to
acquire the primary signal of a real world radio broadcast taking place using
FM. Experimental data show that even at low signal to noise ratio, our approach
performs well in terms of detection and classification accuracies, as compared
to current spectrum sensing methods.
Related papers
- Exploring Cross-Domain Few-Shot Classification via Frequency-Aware Prompting [37.721042095518044]
Cross-Domain Few-Shot Learning has witnessed great stride with the development of meta-learning.
We propose a Frequency-Aware Prompting method with mutual attention for Cross-Domain Few-Shot classification.
arXiv Detail & Related papers (2024-06-24T08:14:09Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Realtime Spectrum Monitoring via Reinforcement Learning -- A Comparison
Between Q-Learning and Heuristic Methods [0.0]
Two approaches for controlling available receiver resources are compared.
The Q-learning algorithm used has a significantly higher detection rate than the approach at the expense of a smaller exploration rate.
arXiv Detail & Related papers (2023-07-11T19:40:02Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
This paper presents an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem.
We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks.
We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
arXiv Detail & Related papers (2023-06-19T12:01:28Z) - Low-Latency Cooperative Spectrum Sensing via Truncated Vertical
Federated Learning [51.51440623636274]
We propose a vertical federated learning (VFL) framework to exploit the distributed features across multiple secondary users (SUs) without compromising data privacy.
To accelerate the training process, we propose a truncated vertical federated learning (T-VFL) algorithm.
The convergence performance of T-VFL is provided via mathematical analysis and justified by simulation results.
arXiv Detail & Related papers (2022-08-07T10:39:27Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
Terahertz (THz) signal generation and radiation methods are shaping the future of wireless systems.
THz-specific signal processing techniques should complement this re-surged interest in THz sensing for efficient utilization of the THz band.
We present an overview of these techniques, with an emphasis on signal pre-processing.
We also address the effectiveness of deep learning techniques by exploring their promising sensing capabilities at the THz band.
arXiv Detail & Related papers (2021-04-09T01:38:34Z) - Spectrum Sensing and Signal Identification with Deep Learning based on
Spectral Correlation Function [2.6626788331762867]
A convolutional neural network (CNN) model employing spectral correlation function is proposed for wireless spectrum sensing and signal identification.
The proposed method classifies wireless signals without a priori information and it is implemented in two different settings entitled CASE1 and CASE2.
Even though the implementation herein is over cellular signals, the proposed approach can be extended to the detection and classification of any signal that exhibits cyclostationary features.
arXiv Detail & Related papers (2020-03-17T06:56:26Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
This paper explores the use of ambient radio frequency (RF) signals for human presence detection through deep learning.
Using WiFi signal as an example, we demonstrate that the channel state information (CSI) obtained at the receiver contains rich information about the propagation environment.
A convolutional neural network (CNN) properly trained with both magnitude and phase information is then designed to achieve reliable presence detection.
arXiv Detail & Related papers (2020-02-13T20:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.