Multi-task Learning for Radar Signal Characterisation
- URL: http://arxiv.org/abs/2306.13105v2
- Date: Tue, 30 Apr 2024 04:48:00 GMT
- Title: Multi-task Learning for Radar Signal Characterisation
- Authors: Zi Huang, Akila Pemasiri, Simon Denman, Clinton Fookes, Terrence Martin,
- Abstract summary: This paper presents an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem.
We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks.
We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
- Score: 48.265859815346985
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Radio signal recognition is a crucial task in both civilian and military applications, as accurate and timely identification of unknown signals is an essential part of spectrum management and electronic warfare. The majority of research in this field has focused on applying deep learning for modulation classification, leaving the task of signal characterisation as an understudied area. This paper addresses this gap by presenting an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem. We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks. We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
Related papers
- Radar Signal Recognition through Self-Supervised Learning and Domain Adaptation [48.265859815346985]
We introduce a self-supervised learning (SSL) method to enhance radar signal recognition in environments with limited RF samples and labels.
Specifically, we investigate pre-training masked autoencoders (MAE) on baseband in-phase and quadrature (I/Q) signals from various RF domains.
Results show that our lightweight self-supervised ResNet model with domain adaptation achieves up to a 17.5% improvement in 1-shot classification accuracy.
arXiv Detail & Related papers (2025-01-07T01:35:56Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Multi-stage Learning for Radar Pulse Activity Segmentation [51.781832424705094]
Radio signal recognition is a crucial function in electronic warfare.
Precise identification and localisation of radar pulse activities are required by electronic warfare systems.
Deep learning-based radar pulse activity recognition methods have remained largely underexplored.
arXiv Detail & Related papers (2023-12-15T01:56:27Z) - Classification of Intra-Pulse Modulation of Radar Signals by Feature
Fusion Based Convolutional Neural Networks [5.199765487172328]
We propose a novel deep-learning based technique that automatically recognizes intra-pulse modulation types of radar signals.
We show that the proposed FF-CNN technique outperforms the current state-of-the-art alternatives.
arXiv Detail & Related papers (2022-05-19T20:18:17Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Signal Transformer: Complex-valued Attention and Meta-Learning for
Signal Recognition [33.178794056273304]
We propose a Complex-valued Attentional MEta Learner (CAMEL) for the problem few of general nonvalued problems with theoretical convergence guarantees.
This paper shows the superiority of the proposed data recognition experiments when the state is abundant small data.
arXiv Detail & Related papers (2021-06-05T03:57:41Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Multi-task Learning Approach for Automatic Modulation and Wireless
Signal Classification [1.827510863075184]
We exploit the potential of deep neural networks in conjunction with multi-task learning (MTL) framework to simultaneously learn modulation and signal classification tasks.
We release the only known open heterogeneous wireless signals dataset that comprises of radar and communication signals with multiple labels.
arXiv Detail & Related papers (2021-01-25T17:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.