論文の概要: Reinforcement Learning for Few-Shot Text Generation Adaptation
- arxiv url: http://arxiv.org/abs/2111.11030v1
- Date: Mon, 22 Nov 2021 07:33:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 23:34:55.610401
- Title: Reinforcement Learning for Few-Shot Text Generation Adaptation
- Title(参考訳): Few-Shotテキスト生成適応のための強化学習
- Authors: Cheng Pengsen, Dai Jinqiao, Liu Jiayong
- Abstract要約: テキスト生成システムの適応化を強化学習問題として検討する。
ドメイン内サンプルが少ない場合,本手法はドメイン適応を著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling the generative model to adapt a new domain with limited samples
is a difficult challenge and it is receiving increasing attention. Recently,
few-shot learning has shown promising process in domain adaptation. However,
the texts generated by few-shot learning are typically devoid of linguistic
diversity. To address this shortcoming, we frame the adaptation of text
generation systems as a reinforcement learning problem and provide a new
approach to make text generation models easily adaptable to target domain with
the minimal amount of in-domain data. Experimental results on five target
domains in two few-shot configurations demonstrate that our method
significantly outperforms domain adaptation when very few in-domain samples are
available.
- Abstract(参考訳): 新しいドメインを限られたサンプルで適応させるために生成モデルを制御することは難しい課題であり、注目を集めています。
近年,ドメイン適応に有望なプロセスが示されている。
しかし、数少ない学習によって生成されたテキストは、通常、言語的な多様性が欠如している。
この欠点に対処するために,テキスト生成システムの適応化を強化学習問題として定式化し,テキスト生成モデルを最小のドメイン内データ量で対象領域に容易に適応させる新しい手法を提案する。
2つの複数ショット構成の5つの対象ドメインに対する実験結果から,本手法はドメイン内サンプルが少ない場合に,ドメイン適応性を大幅に向上することが示された。
関連論文リスト
- Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
0ショットのGAN適応は、よく訓練されたジェネレータを再利用して、目に見えないターゲットドメインの画像を合成することを目的としている。
実際の画像の代わりに1つの代表的テキスト機能しか持たないため、合成された画像は徐々に多様性を損なう。
そこで本研究では,CLIP空間における対象テキストの意味的変化を見つけるための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T08:12:28Z) - Smoothness Similarity Regularization for Few-Shot GAN Adaptation [16.92497517282215]
本稿では,学習済みのGANの学習済みの滑らかさを少数ショット対象領域に伝達する,新しい滑らかさ類似性正規化を提案する。
我々は,無条件GANとクラス条件GANを多種多様な標的ドメインに適応させることにより,我々のアプローチを評価する。
論文 参考訳(メタデータ) (2023-08-18T17:59:53Z) - Domain Adaptation from Scratch [24.612696638386623]
我々は、NLPを機密ドメインに拡張するために欠かせない、新しい学習セットである「スクラッチからのドメイン適応」を提示する。
この設定では、トレーニングされたモデルがセンシティブなターゲットドメイン上でうまく動作するように、ソースドメインの集合からのデータを効率的にアノテートすることを目的としている。
本研究は、データ選択やドメイン適応アルゴリズムからアクティブな学習パラダイムまで、この挑戦的な設定に対するいくつかのアプローチを比較した。
論文 参考訳(メタデータ) (2022-09-02T05:55:09Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
ドメイン間で構造的に類似するラベルパッチの機能を調整することで、ドメインギャップを埋めるためにコントラスト学習を利用する。
私たちのアプローチは、常に2つの困難なドメイン適応セグメンテーションタスクにおいて、最先端の非監視および半監督メソッドを上回ります。
論文 参考訳(メタデータ) (2021-04-22T13:39:12Z) - Progressive Generation of Long Text with Pretrained Language Models [83.62523163717448]
GPT-2のような大量のテキストコーパスで事前訓練された大規模言語モデル(LM)は、強力なオープンドメインテキストジェネレータである。
このようなモデルが、特に小さなコーパス上のターゲットドメインに微調整された場合、コヒーレントな長いテキストパスを生成することは依然として困難である。
本稿では,低解像度から高解像度の画像に触発されて,テキストを段階的に生成する簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2020-06-28T21:23:05Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z) - Text Recognition in Real Scenarios with a Few Labeled Samples [55.07859517380136]
Scene Text Recognition (STR) はコンピュータビジョン分野におけるホットな研究テーマである。
本稿では,数ショットの逆数列領域適応 (FASDA) を用いて構築シーケンスを適応する手法を提案する。
我々のアプローチは、ソースドメインとターゲットドメインの間の文字レベルの混乱を最大化することができる。
論文 参考訳(メタデータ) (2020-06-22T13:03:01Z) - Learning to adapt class-specific features across domains for semantic
segmentation [36.36210909649728]
本論文では,クラス情報毎に考慮し,ドメイン間の特徴を適応させることを学習する新しいアーキテクチャを提案する。
我々は最近導入されたStarGANアーキテクチャを画像翻訳のバックボーンとして採用している。
論文 参考訳(メタデータ) (2020-01-22T23:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。