Depth-aware Object Segmentation and Grasp Detection for Robotic Picking
Tasks
- URL: http://arxiv.org/abs/2111.11114v1
- Date: Mon, 22 Nov 2021 11:06:33 GMT
- Title: Depth-aware Object Segmentation and Grasp Detection for Robotic Picking
Tasks
- Authors: Stefan Ainetter, Christoph B\"ohm, Rohit Dhakate, Stephan Weiss,
Friedrich Fraundorfer
- Abstract summary: We present a novel deep neural network architecture for joint class-agnostic object segmentation and grasp detection for robotic picking tasks.
We introduce depth-aware Coordinate Convolution (CoordConv), a method to increase accuracy for point proposal based object instance segmentation.
We evaluate the accuracy of grasp detection and instance segmentation on challenging robotic picking datasets, namely Sil'eane and OCID_grasp.
- Score: 13.337131101813934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a novel deep neural network architecture for joint
class-agnostic object segmentation and grasp detection for robotic picking
tasks using a parallel-plate gripper. We introduce depth-aware Coordinate
Convolution (CoordConv), a method to increase accuracy for point proposal based
object instance segmentation in complex scenes without adding any additional
network parameters or computation complexity. Depth-aware CoordConv uses depth
data to extract prior information about the location of an object to achieve
highly accurate object instance segmentation. These resulting segmentation
masks, combined with predicted grasp candidates, lead to a complete scene
description for grasping using a parallel-plate gripper. We evaluate the
accuracy of grasp detection and instance segmentation on challenging robotic
picking datasets, namely Sil\'eane and OCID_grasp, and show the benefit of
joint grasp detection and segmentation on a real-world robotic picking task.
Related papers
- LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
This paper introduces a framework that explores amodal segmentation for robotic grasping in cluttered scenes.
We propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net)
The results on different datasets show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-08-06T14:50:48Z) - AGILE: Approach-based Grasp Inference Learned from Element Decomposition [2.812395851874055]
Humans can grasp objects by taking into account hand-object positioning information.
This work proposes a method to enable a robot manipulator to learn the same, grasping objects in the most optimal way.
arXiv Detail & Related papers (2024-02-02T10:47:08Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
We introduce an end-to-end architecture for object-centric grasping.
We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets.
arXiv Detail & Related papers (2024-01-18T12:41:41Z) - PWISeg: Point-based Weakly-supervised Instance Segmentation for Surgical
Instruments [27.89003436883652]
We propose a weakly-supervised surgical instrument segmentation approach, named Point-based Weakly-supervised Instance (PWISeg)
PWISeg adopts an FCN-based architecture with point-to-box and point-to-mask branches to model the relationships between feature points and bounding boxes.
Based on this, we propose a key pixel association loss and a key pixel distribution loss, driving the point-to-mask branch to generate more accurate segmentation predictions.
arXiv Detail & Related papers (2023-11-16T11:48:29Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
Given a 3D object, kinematic motion prediction aims to identify the mobile parts as well as the corresponding motion parameters.
We propose a graph neural network to learn the map between hierarchical part-level segmentation and mobile parts parameters.
The network predictions yield a large scale of 3D objects with pseudo labeled mobility information.
arXiv Detail & Related papers (2023-03-31T02:37:36Z) - Location-Aware Self-Supervised Transformers [74.76585889813207]
We propose to pretrain networks for semantic segmentation by predicting the relative location of image parts.
We control the difficulty of the task by masking a subset of the reference patch features visible to those of the query.
Our experiments show that this location-aware pretraining leads to representations that transfer competitively to several challenging semantic segmentation benchmarks.
arXiv Detail & Related papers (2022-12-05T16:24:29Z) - Robust Visual Tracking by Segmentation [103.87369380021441]
Estimating the target extent poses a fundamental challenge in visual object tracking.
We propose a segmentation-centric tracking pipeline that produces a highly accurate segmentation mask.
Our tracker is able to better learn a target representation that clearly differentiates the target in the scene from background content.
arXiv Detail & Related papers (2022-03-21T17:59:19Z) - End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and
Semantic Segmentation from RGB [13.546424272544805]
We introduce a novel, end-to-end trainable CNN-based architecture to deliver high quality results for grasp detection suitable for a parallel-plate gripper.
Our proposed network delivers state-of-the-art accuracy on two popular grasp dataset, namely Cornell and Jacquard.
arXiv Detail & Related papers (2021-07-12T09:45:13Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
This paper addresses the task of unsupervised video multi-object segmentation.
We introduce a novel approach for more accurate and efficient unseen-temporal segmentation.
We evaluate the proposed approach on DAVIS$_17$ and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
arXiv Detail & Related papers (2021-04-10T14:39:44Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
We argue that the image features extracted at a central point contain limited information for predicting distant keypoints or bounding box boundaries.
To facilitate inference, we propose to instead perform regression from a set of points placed at more advantageous positions.
We apply this proposed framework, called Point-Set Anchors, to object detection, instance segmentation, and human pose estimation.
arXiv Detail & Related papers (2020-07-06T15:59:56Z) - Weakly Supervised Instance Segmentation by Deep Community Learning [39.18749732409763]
We present a weakly supervised instance segmentation algorithm based on deep community learning with multiple tasks.
We address this problem by designing a unified deep neural network architecture.
The proposed algorithm achieves state-of-the-art performance in the weakly supervised setting.
arXiv Detail & Related papers (2020-01-30T08:35:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.