LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion
- URL: http://arxiv.org/abs/2408.03238v1
- Date: Tue, 6 Aug 2024 14:50:48 GMT
- Title: LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion
- Authors: Jinyu Zhang, Yongchong Gu, Jianxiong Gao, Haitao Lin, Qiang Sun, Xinwei Sun, Xiangyang Xue, Yanwei Fu,
- Abstract summary: This paper introduces a framework that explores amodal segmentation for robotic grasping in cluttered scenes.
We propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net)
The results on different datasets show that our method achieves state-of-the-art performance.
- Score: 79.22197702626542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of perceiving complete object shapes through visual perception. While prior studies have demonstrated encouraging outcomes in segmenting the visible parts of objects within a scene, amodal segmentation, in particular, has the potential to allow robots to infer the occluded parts of objects. To this end, this paper introduces a new framework that explores amodal segmentation for robotic grasping in cluttered scenes, thus greatly enhancing robotic grasping abilities. Initially, we use a conventional segmentation algorithm to detect the visible segments of the target object, which provides shape priors for completing the full object mask. Particularly, to explore how to utilize semantic features from RGB images and geometric information from depth images, we propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net). LAC-Net utilizes the linear-fusion strategy to effectively fuse this cross-modal data, and then uses the prior visible mask as attention map to guide the network to focus on target feature locations for further complete mask recovery. Using the amodal mask of the target object provides advantages in selecting more accurate and robust grasp points compared to relying solely on the visible segments. The results on different datasets show that our method achieves state-of-the-art performance. Furthermore, the robot experiments validate the feasibility and robustness of this method in the real world. Our code and demonstrations are available on the project page: https://jrryzh.github.io/LAC-Net.
Related papers
- LOCATE: Self-supervised Object Discovery via Flow-guided Graph-cut and
Bootstrapped Self-training [13.985488693082981]
We propose a self-supervised object discovery approach that leverages motion and appearance information to produce high-quality object segmentation masks.
We demonstrate the effectiveness of our approach, named LOCATE, on multiple standard video object segmentation, image saliency detection, and object segmentation benchmarks.
arXiv Detail & Related papers (2023-08-22T07:27:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Sharp Eyes: A Salient Object Detector Working The Same Way as Human
Visual Characteristics [3.222802562733787]
We propose a sharp eyes network (SENet) that first seperates the object from scene, and then finely segments it.
The proposed method aims to utilize the expanded objects to guide the network obtain complete prediction.
arXiv Detail & Related papers (2023-01-18T11:00:45Z) - Unsupervised Video Object Segmentation via Prototype Memory Network [5.612292166628669]
Unsupervised video object segmentation aims to segment a target object in the video without a ground truth mask in the initial frame.
This challenge requires extracting features for the most salient common objects within a video sequence.
We propose a novel prototype memory network architecture to solve this problem.
arXiv Detail & Related papers (2022-09-08T11:08:58Z) - Exploiting Shape Cues for Weakly Supervised Semantic Segmentation [15.791415215216029]
Weakly supervised semantic segmentation (WSSS) aims to produce pixel-wise class predictions with only image-level labels for training.
We propose to exploit shape information to supplement the texture-biased property of convolutional neural networks (CNNs)
We further refine the predictions in an online fashion with a novel refinement method that takes into account both the class and the color affinities.
arXiv Detail & Related papers (2022-08-08T17:25:31Z) - RICE: Refining Instance Masks in Cluttered Environments with Graph
Neural Networks [53.15260967235835]
We propose a novel framework that refines the output of such methods by utilizing a graph-based representation of instance masks.
We train deep networks capable of sampling smart perturbations to the segmentations, and a graph neural network, which can encode relations between objects, to evaluate the segmentations.
We demonstrate an application that uses uncertainty estimates generated by our method to guide a manipulator, leading to efficient understanding of cluttered scenes.
arXiv Detail & Related papers (2021-06-29T20:29:29Z) - Locate then Segment: A Strong Pipeline for Referring Image Segmentation [73.19139431806853]
Referring image segmentation aims to segment the objects referred by a natural language expression.
Previous methods usually focus on designing an implicit and recurrent interaction mechanism to fuse the visual-linguistic features to directly generate the final segmentation mask.
We present a "Then-Then-Segment" scheme to tackle these problems.
Our framework is simple but surprisingly effective.
arXiv Detail & Related papers (2021-03-30T12:25:27Z) - Spatiotemporal Graph Neural Network based Mask Reconstruction for Video
Object Segmentation [70.97625552643493]
This paper addresses the task of segmenting class-agnostic objects in semi-supervised setting.
We propose a novel graph neuralS network (TG-Net) which captures the local contexts by utilizing all proposals.
arXiv Detail & Related papers (2020-12-10T07:57:44Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Joint Object Contour Points and Semantics for Instance Segmentation [1.2117737635879038]
We propose Mask Point R-CNN aiming at promoting the neural network's attention to the object boundary.
Specifically, we innovatively extend the original human keypoint detection task to the contour point detection of any object.
As a consequence, the model will be more sensitive to the edges of the object and can capture more geometric features.
arXiv Detail & Related papers (2020-08-02T11:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.