Deep Learning Based Automated COVID-19 Classification from Computed
Tomography Images
- URL: http://arxiv.org/abs/2111.11191v1
- Date: Mon, 22 Nov 2021 13:35:10 GMT
- Title: Deep Learning Based Automated COVID-19 Classification from Computed
Tomography Images
- Authors: Kenan Morani, Devrim Unay
- Abstract summary: The paper presents a Convolutional Neural Networks (CNN) model for image classification, aiming at increasing predictive performance for COVID-19 diagnosis.
This work proposes a less complex solution based on simply classifying 2D CT-Scan slices of images using their pixels via a 2D CNN model.
Despite the simplicity in architecture, the proposed model showed improved quantitative results exceeding state-of-the-art on the same dataset of images.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents a Convolutional Neural Networks (CNN) model for image
classification, aiming at increasing predictive performance for COVID-19
diagnosis while avoiding deeper and thus more complex alternatives. The
proposed model includes four similar convolutional layers followed by a
flattening and two dense layers. This work proposes a less complex solution
based on simply classifying 2D CT-Scan slices of images using their pixels via
a 2D CNN model. Despite the simplicity in architecture, the proposed model
showed improved quantitative results exceeding state-of-the-art on the same
dataset of images, in terms of the macro f1 score. In this case study,
extracting features from images, segmenting parts of the images, or other more
complex techniques, ultimately aiming at images classification, do not yield
better results. With that, this paper introduces a simple yet powerful deep
learning based solution for automated COVID-19 classification.
Related papers
- Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - Feature Activation Map: Visual Explanation of Deep Learning Models for
Image Classification [17.373054348176932]
In this work, a post-hoc interpretation tool named feature activation map (FAM) is proposed.
FAM can interpret deep learning models without FC layers as a classifier.
Experiments conducted on ten deep learning models for few-shot image classification, contrastive learning image classification and image retrieval tasks demonstrate the effectiveness of the proposed FAM algorithm.
arXiv Detail & Related papers (2023-07-11T05:33:46Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans [2.696776905220987]
Traditional deep learning frameworks encounter compatibility issues due to variations in slice numbers and resolutions in CT images.
We propose a novel slice selection method for each CT dataset to address this limitation.
In addition to the aforementioned methods, we explore various high-performance classification models, ultimately achieving promising results.
arXiv Detail & Related papers (2023-03-15T09:52:28Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
We propose a new model-data-driven network to achieve tomoSAR imaging based on multi-dimensional features.
We add two 2D processing modules, both convolutional encoder-decoder structures, to enhance multi-dimensional features of the imaging scene effectively.
Compared with the conventional CS-based FISTA method and DL-based gamma-Net method, the result of our proposed method has better performance on completeness while having decent imaging accuracy.
arXiv Detail & Related papers (2022-11-28T02:01:43Z) - Data Augmentation and CNN Classification For Automatic COVID-19
Diagnosis From CT-Scan Images On Small Dataset [0.0]
We present an automatic COVID1-19 diagnosis framework from lung CT images.
We propose a unique and effective data augmentation method using multiple Hounsfield Unit (HU) normalization windows.
On the training/validation dataset, we achieve a patient classification accuracy of 93.39%.
arXiv Detail & Related papers (2021-08-16T15:23:00Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
We study the learning of representation models for omnidirectional images and propose to use the properties of HEALPix uniform sampling of the sphere to redefine the mathematical tools used in deep learning models for omnidirectional images.
Our proposed on-the-sphere solution leads to a better compression gain that can save 13.7% of the bit rate compared to similar learned models applied to equirectangular images.
arXiv Detail & Related papers (2021-07-19T22:14:30Z) - Generating Diverse Structure for Image Inpainting With Hierarchical
VQ-VAE [74.29384873537587]
We propose a two-stage model for diverse inpainting, where the first stage generates multiple coarse results each of which has a different structure, and the second stage refines each coarse result separately by augmenting texture.
Experimental results on CelebA-HQ, Places2, and ImageNet datasets show that our method not only enhances the diversity of the inpainting solutions but also improves the visual quality of the generated multiple images.
arXiv Detail & Related papers (2021-03-18T05:10:49Z) - Convolutional Neural Networks from Image Markers [62.997667081978825]
Feature Learning from Image Markers (FLIM) was recently proposed to estimate convolutional filters, with no backpropagation, from strokes drawn by a user on very few images.
This paper extends FLIM for fully connected layers and demonstrates it on different image classification problems.
The results show that FLIM-based convolutional neural networks can outperform the same architecture trained from scratch by backpropagation.
arXiv Detail & Related papers (2020-12-15T22:58:23Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.