Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans
- URL: http://arxiv.org/abs/2303.08490v1
- Date: Wed, 15 Mar 2023 09:52:28 GMT
- Title: Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans
- Authors: Chih-Chung Hsu, Chih-Yu Jian, Chia-Ming Lee, Chi-Han Tsai, and
Sheng-Chieh Dai
- Abstract summary: Traditional deep learning frameworks encounter compatibility issues due to variations in slice numbers and resolutions in CT images.
We propose a novel slice selection method for each CT dataset to address this limitation.
In addition to the aforementioned methods, we explore various high-performance classification models, ultimately achieving promising results.
- Score: 2.696776905220987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the application of deep learning models for lung
Computed Tomography (CT) image analysis. Traditional deep learning frameworks
encounter compatibility issues due to variations in slice numbers and
resolutions in CT images, which stem from the use of different machines.
Commonly, individual slices are predicted and subsequently merged to obtain the
final result; however, this approach lacks slice-wise feature learning and
consequently results in decreased performance. We propose a novel slice
selection method for each CT dataset to address this limitation, effectively
filtering out uncertain slices and enhancing the model's performance.
Furthermore, we introduce a spatial-slice feature learning (SSFL)
technique\cite{hsu2022} that employs a conventional and efficient backbone
model for slice feature training, followed by extracting one-dimensional data
from the trained model for COVID and non-COVID classification using a dedicated
classification model. Leveraging these experimental steps, we integrate
one-dimensional features with multiple slices for channel merging and employ a
2D convolutional neural network (CNN) model for classification. In addition to
the aforementioned methods, we explore various high-performance classification
models, ultimately achieving promising results.
Related papers
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Simple 2D Convolutional Neural Network-based Approach for COVID-19 Detection [8.215897530386343]
This study explores the use of deep learning techniques for analyzing lung Computed Tomography (CT) images.
We propose an advanced Spatial-Slice Feature Learning (SSFL++) framework specifically tailored for CT scans.
It aims to filter out out out-of-distribution (OOD) data within the entire CT scan, allowing us to select essential spatial-slice features for analysis by reducing data redundancy by 70%.
arXiv Detail & Related papers (2024-03-17T14:34:51Z) - Scale-Equivariant UNet for Histopathology Image Segmentation [1.213915839836187]
Convolutional Neural Networks (CNNs) trained on such images at a given scale fail to generalise to those at different scales.
We propose the Scale-Equivariant UNet (SEUNet) for image segmentation by building on scale-space theory.
arXiv Detail & Related papers (2023-04-10T14:03:08Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
We propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly.
First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks.
Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning.
arXiv Detail & Related papers (2022-07-04T16:59:05Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Deep Learning Based Automated COVID-19 Classification from Computed
Tomography Images [0.0]
The paper presents a Convolutional Neural Networks (CNN) model for image classification, aiming at increasing predictive performance for COVID-19 diagnosis.
This work proposes a less complex solution based on simply classifying 2D CT-Scan slices of images using their pixels via a 2D CNN model.
Despite the simplicity in architecture, the proposed model showed improved quantitative results exceeding state-of-the-art on the same dataset of images.
arXiv Detail & Related papers (2021-11-22T13:35:10Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - An End-to-End Breast Tumour Classification Model Using Context-Based
Patch Modelling- A BiLSTM Approach for Image Classification [19.594639581421422]
We have tried to integrate this relationship along with feature-based correlation among the extracted patches from the particular tumorous region.
We trained and tested our model on two datasets, microscopy images and WSI tumour regions.
We found out that BiLSTMs with CNN features have performed much better in modelling patches into an end-to-end Image classification network.
arXiv Detail & Related papers (2021-06-05T10:43:58Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.