論文の概要: LeQua@CLEF2022: Learning to Quantify
- arxiv url: http://arxiv.org/abs/2111.11249v1
- Date: Mon, 22 Nov 2021 14:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 21:06:44.825697
- Title: LeQua@CLEF2022: Learning to Quantify
- Title(参考訳): lequa@clef2022: 定量化の学習
- Authors: Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani
- Abstract要約: LeQua 2022は、テキストデータセットで'を定量化する方法を評価するための新しい実験室である。
本研究の目的は、バイナリ設定とシングルラベルのマルチクラス設定の両方において、学習方法の比較評価のための設定を提供することである。
- 参考スコア(独自算出の注目度): 76.22817970624875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LeQua 2022 is a new lab for the evaluation of methods for ``learning to
quantify'' in textual datasets, i.e., for training predictors of the relative
frequencies of the classes of interest in sets of unlabelled textual documents.
While these predictions could be easily achieved by first classifying all
documents via a text classifier and then counting the numbers of documents
assigned to the classes, a growing body of literature has shown this approach
to be suboptimal, and has proposed better methods. The goal of this lab is to
provide a setting for the comparative evaluation of methods for learning to
quantify, both in the binary setting and in the single-label multiclass
setting. For each such setting we provide data either in ready-made vector form
or in raw document form.
- Abstract(参考訳): lequa 2022は、テキストデータセットにおける ‘learning to quantify'' の手法、すなわち、ラベルなしのテキスト文書の集合に対する興味のあるクラスの相対周波数の予測子を訓練するための新しいラボである。
これらの予測は、まずテキスト分類器を用いてすべての文書を分類し、次にクラスに割り当てられた文書の数を数えることによって容易に実現できるが、増大する文献群はこのアプローチを最適以下に示し、より良い方法を提案する。
この研究室の目標は、バイナリ設定とシングルラベルマルチクラス設定の両方において、定量化の学習方法の比較評価のための設定を提供することである。
このような設定ごとに、プリメイドベクター形式または生文書形式でデータを提供します。
関連論文リスト
- Contextual Document Embeddings [77.22328616983417]
本稿では,コンテキスト化された文書埋め込みのための2つの補完手法を提案する。
第一に、文書近傍を明示的にバッチ内コンテキスト損失に組み込む別のコントラスト学習目標である。
第二に、隣接する文書情報をエンコードされた表現に明示的にエンコードする新しいコンテキストアーキテクチャ。
論文 参考訳(メタデータ) (2024-10-03T14:33:34Z) - Classification Tree-based Active Learning: A Wrapper Approach [4.706932040794696]
本稿では,木構造にサンプリングプロセスを整理し,分類のためのラッパー能動的学習法を提案する。
ラベル付き標本の初期集合上に構築された分類木は、空間を低エントロピー領域に分解すると考えられる。
この適応は、既存のアクティブラーニング手法よりも大幅に向上することが証明されている。
論文 参考訳(メタデータ) (2024-04-15T17:27:00Z) - A Fixed-Point Approach to Unified Prompt-Based Counting [51.20608895374113]
本研究の目的は,ボックス,ポイント,テキストなど,さまざまなプロンプト型で示されるオブジェクトの密度マップを生成することができる包括的プロンプトベースのカウントフレームワークを確立することである。
本モデルは,クラスに依存しない顕著なデータセットに優れ,データセット間の適応タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-15T12:05:44Z) - A Novel Dataset for Non-Destructive Inspection of Handwritten Documents [0.0]
法医学的手書き検査は、原稿の著者を適切に定義または仮説化するために手書きの文書を調べることを目的としている。
2つのサブセットからなる新しい挑戦的データセットを提案する。第1は古典的なペンと紙で書かれた21の文書で、後者は後にデジタル化され、タブレットなどの一般的なデバイスで直接取得される。
提案したデータセットの予備的な結果は、第1サブセットで90%の分類精度が得られることを示している。
論文 参考訳(メタデータ) (2024-01-09T09:25:58Z) - Retrieval-based Text Selection for Addressing Class-Imbalanced Data in
Classification [0.6650227510403052]
本稿では,テキスト分類における注釈用テキストの集合を検索手法を用いて選択する問題に対処する。
もうひとつの課題は、少数の正のインスタンスを持つバイナリカテゴリを扱うことだ。
そこで本研究では,アノテーションのための少数のテキストを選択し,高品質な分類器を構築するための効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-07-27T14:42:16Z) - Task-Specific Embeddings for Ante-Hoc Explainable Text Classification [6.671252951387647]
テキストのタスク固有の埋め込みを学習する学習目標を提案する。
提案する目的は,同一のクラスラベルを共有するすべてのテキストが近接しているように埋め込みを学習することである。
本研究は, 総合的な分類精度において, アンテホックな説明可能性と漸進的な学習の利点が無コストで得られることを示す広範囲な実験である。
論文 参考訳(メタデータ) (2022-11-30T19:56:25Z) - DocSCAN: Unsupervised Text Classification via Learning from Neighbors [2.2082422928825145]
Semantic Clustering by Adopting Nearest-Neighbors (SCAN)を用いた、完全に教師なしのテキスト分類アプローチであるDocSCANを紹介します。
各文書に対して,大規模事前学習言語モデルから意味情報ベクトルを得る。
類似の文書には近接ベクトルがあるので、表現空間の隣人はトピックラベルを共有する傾向がある。
学習可能なクラスタリングアプローチでは、隣接するデータポイントのペアを弱い学習信号として使用します。
提案されたアプローチは、グラウンドトラスラベルなしでデータセット全体にクラスを割り当てることを学ぶ。
論文 参考訳(メタデータ) (2021-05-09T21:20:31Z) - Minimally-Supervised Structure-Rich Text Categorization via Learning on
Text-Rich Networks [61.23408995934415]
テキストリッチネットワークから学習することで,最小限に教師付き分類を行う新しいフレームワークを提案する。
具体的には、テキスト理解のためのテキスト解析モジュールと、クラス差別的でスケーラブルなネットワーク学習のためのネットワーク学習モジュールの2つのモジュールを共同でトレーニングします。
実験の結果,1つのカテゴリに3つのシード文書しか与えられず,その精度は約92%であった。
論文 参考訳(メタデータ) (2021-02-23T04:14:34Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - SPECTER: Document-level Representation Learning using Citation-informed
Transformers [51.048515757909215]
SPECTERは、Transformer言語モデルの事前学習に基づいて、科学文書の文書レベルの埋め込みを生成する。
SciDocsは、引用予測から文書分類、レコメンデーションまでの7つの文書レベルのタスクからなる新しい評価ベンチマークである。
論文 参考訳(メタデータ) (2020-04-15T16:05:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。