論文の概要: Model-agnostic bias mitigation methods with regressor distribution
control for Wasserstein-based fairness metrics
- arxiv url: http://arxiv.org/abs/2111.11259v1
- Date: Fri, 19 Nov 2021 17:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 17:18:11.197601
- Title: Model-agnostic bias mitigation methods with regressor distribution
control for Wasserstein-based fairness metrics
- Title(参考訳): 回帰器分布制御を用いたWasserstein-based Fairness Metricsのモデル非依存バイアス緩和法
- Authors: Alexey Miroshnikov, Konstandinos Kotsiopoulos, Ryan Franks, Arjun Ravi
Kannan
- Abstract要約: より公平な回帰分布を持つ後処理モデルの構築に基づくバイアス緩和手法を提案する。
提案手法は低次元空間において最適化を行い,コストのかかるモデル再訓練を回避する。
- 参考スコア(独自算出の注目度): 0.6509758931804478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article is a companion paper to our earlier work Miroshnikov et al.
(2021) on fairness interpretability, which introduces bias explanations. In the
current work, we propose a bias mitigation methodology based upon the
construction of post-processed models with fairer regressor distributions for
Wasserstein-based fairness metrics. By identifying the list of predictors
contributing the most to the bias, we reduce the dimensionality of the problem
by mitigating the bias originating from those predictors. The post-processing
methodology involves reshaping the predictor distributions by balancing the
positive and negative bias explanations and allows for the regressor bias to
decrease. We design an algorithm that uses Bayesian optimization to construct
the bias-performance efficient frontier over the family of post-processed
models, from which an optimal model is selected. Our novel methodology performs
optimization in low-dimensional spaces and avoids expensive model retraining.
- Abstract(参考訳): この記事では、偏見説明を導入するフェアネス解釈可能性に関する初期の論文であるMiroshnikov et al. (2021)の共著である。
本稿では,Wassersteinをベースとしたフェアネス測定値に対して,より公平な回帰分布を持つ後処理モデルの構築に基づくバイアス緩和手法を提案する。
バイアスに最も寄与する予測者のリストを同定することにより、これらの予測者に由来するバイアスを軽減し、問題の次元性を低減する。
後処理手法では、正と負のバイアス説明のバランスをとることによって予測分布を再構成し、回帰のバイアスを減少させる。
最適なモデルが選択される後処理モデル群に対するバイアス効率の優れたフロンティアを構築するためにベイズ最適化を用いたアルゴリズムを設計する。
提案手法は,低次元空間において最適化を行い,高価なモデル再訓練を回避する。
関連論文リスト
- Inference-Time Selective Debiasing [27.578390085427156]
モデル全体の品質向上を目的とした,推論時の安全性メカニズムである選択的デバイアス(elective debiasing)を提案する。
潜在的なバイアスのあるモデル予測を特定し、それらを捨てる代わりに、後処理のデバイアス手法であるLEACEを使ってそれらをデバイアスします。
テキスト分類データセットを用いた実験では、選択的デバイアスは、後処理方法とトレーニングと前処理のデバイアス技術の間のパフォーマンスギャップを埋めるのに役立つことが示されている。
論文 参考訳(メタデータ) (2024-07-27T21:56:23Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
言語モデル (LM) は、好みのアノテーションから派生した報酬関数を最大化する。
DPOは、報酬モデルや強化学習を適用することなく、優先データに直接ポリシーを訓練する一般的なオフラインアライメント手法である。
この現象を解析し, 生成対よりも真の嗜好分布のより良いプロキシを得るため, 蒸留を提案する。
論文 参考訳(メタデータ) (2024-05-29T17:39:48Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Confronting Reward Overoptimization for Diffusion Models: A Perspective of Inductive and Primacy Biases [76.9127853906115]
拡散モデルと人間の嗜好のギャップを埋めることが、実用的生成への統合に不可欠である。
本稿では,拡散モデルの時間的帰納バイアスを利用したポリシー勾配アルゴリズムTDPO-Rを提案する。
実験の結果,報酬過小評価を緩和する手法が有効であることが示された。
論文 参考訳(メタデータ) (2024-02-13T15:55:41Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased
Recommendations [4.960902915238239]
本稿では,既存のデバイアス法に適用可能な理論的に保証されたモデル非依存バランス手法を提案する。
提案手法では, バイアスデータを用いて学習したモデルパラメータを補正し, バイアスデータのバランス係数を適応的に学習することで, バイアスデータを完全に活用する。
論文 参考訳(メタデータ) (2023-04-17T08:56:55Z) - Guide the Learner: Controlling Product of Experts Debiasing Method Based
on Token Attribution Similarities [17.082695183953486]
一般的な回避策は、二次バイアスモデルに基づいてトレーニング例を再重み付けすることで、堅牢なモデルをトレーニングすることである。
ここでは、バイアスドモデルが機能をショートカットする、という前提がある。
本稿では,主要モデルと偏りのあるモデル属性スコアの類似性を,プロダクト・オブ・エキスパートズ・ロス関数に組み込んだ微調整戦略を提案する。
論文 参考訳(メタデータ) (2023-02-06T15:21:41Z) - Debiased Fine-Tuning for Vision-language Models by Prompt Regularization [50.41984119504716]
本稿では,Prompt Regularization(ProReg)と呼ばれる下流タスクにおける大規模視覚事前訓練モデルの微調整のための新しいパラダイムを提案する。
ProRegは、事前訓練されたモデルに微調整を正規化するよう促すことで予測を使用する。
本稿では,従来の微調整,ゼロショットプロンプト,プロンプトチューニング,その他の最先端手法と比較して,ProRegの性能が一貫して高いことを示す。
論文 参考訳(メタデータ) (2023-01-29T11:53:55Z) - Modular and On-demand Bias Mitigation with Attribute-Removal Subnetworks [10.748627178113418]
本稿では, 単独で高度に疎細なデビアシングワークからなる, 新たなモジュラーバイアス緩和手法を提案する。
我々は、性別、人種、年齢の3つの分類タスクを保護属性として実験する。
論文 参考訳(メタデータ) (2022-05-30T15:21:25Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。