論文の概要: pmSensing: A Participatory Sensing Network for Predictive Monitoring of
Particulate Matter
- arxiv url: http://arxiv.org/abs/2111.11441v1
- Date: Mon, 22 Nov 2021 17:34:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-25 09:27:45.914920
- Title: pmSensing: A Participatory Sensing Network for Predictive Monitoring of
Particulate Matter
- Title(参考訳): pmSensing:粒子状物質の予測モニタリングのための参加型センシングネットワーク
- Authors: Lucas L. S. Sachetti, Enzo B. Cussuol, Jos\'e Marcos S. Nogueira,
Vinicius F. S. Mota
- Abstract要約: pmSensingシステムは粒子状物質を測定することを目的としている。
プロトタイプが収集したデータとステーションのデータを比較して検証を行う。
このシステムは、リカレントニューラルネットワークを用いて予測分析を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a proposal for a wireless sensor network for participatory
sensing, with IoT sensing devices developed especially for monitoring and
predicting air quality, as alternatives of high cost meteorological stations.
The system, called pmSensing, aims to measure particulate material. A
validation is done by comparing the data collected by the prototype with data
from stations. The comparison shows that the results are close, which can
enable low-cost solutions to the problem. The system still presents a
predictive analysis using recurrent neural networks, in this case the LSTM-RNN,
where the predictions presented high accuracy in relation to the real data.
- Abstract(参考訳): 本稿では,高コスト気象観測ステーションの代替として,特に大気品質の監視と予測のために開発されたiotセンシングデバイスを用いた,参加型センシングのための無線センサネットワークの提案を行う。
pmSensingと呼ばれるこのシステムは、粒子状物質を測定することを目的としている。
プロトタイプが収集したデータとステーションのデータを比較して検証を行う。
比較の結果は結果が近いことを示し、この問題に対する低コストの解決を可能にする。
このシステムは、リカレントニューラルネットワークを用いて予測分析を行い、この場合、LSTM-RNNは、実際のデータに対して高い精度で予測を行う。
関連論文リスト
- Analysis and Optimization of Seismic Monitoring Networks with Bayesian Optimal Experiment Design [0.0]
ベイズ最適実験設計(OED)は、不確実性を最適に低減できるデータ、センサーの構成、実験を特定することを目指している。
情報理論は、最適化問題として実験やセンサ配置の選択を定式化し、OEDを導出する。
本研究では,ベイジアンOEDをセンサネットワークの地震イベント検出能力の最適化に用いるために必要なフレームワークを開発する。
論文 参考訳(メタデータ) (2024-09-27T04:45:27Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
本稿では,ネットワークのセンサ配置問題について検討する。
まず, 流れの保存仮定に基づいて問題を定式化し, 最適に固定されたセンサを配置することがNPハードであることを示す。
次に,大規模ネットワークにスケールするセンサ配置のための効率よく適応的なグリージーを提案する。
論文 参考訳(メタデータ) (2023-12-12T01:08:08Z) - Spatial-Temporal Graph Attention Fuser for Calibration in IoT Air
Pollution Monitoring Systems [8.997596859735516]
本稿では,センサアレイからのデータを融合させることによりキャリブレーションのプロセスを改善する新しい手法を提案する。
我々は,IoT大気汚染監視プラットフォームにおけるセンサの校正精度を大幅に向上させる手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-09-08T12:04:47Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
センサーは、特に南極のような遠隔地において、その測定の情報量が最大になるように配置することは困難である。
確率論的機械学習モデルは、予測の不確実性を最大限に低減するサイトを見つけることによって、情報的センサ配置を提案することができる。
本稿では,これらの問題に対処するために,畳み込み型ガウスニューラルプロセス(ConvGNP)を提案する。
論文 参考訳(メタデータ) (2022-11-18T17:25:14Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - Hybrid Cloud-Edge Collaborative Data Anomaly Detection in Industrial
Sensor Networks [16.06269863500741]
本稿では,クラウドエッジ協調産業センサネットワークにおけるハイブリッド異常検出手法を提案する。
提案されたアプローチは、全体的なリコールの11.19%の増加と、F1スコアの14.29%の改善を達成することができる。
論文 参考訳(メタデータ) (2022-04-21T08:03:22Z) - Data-aided Sensing for Gaussian Process Regression in IoT Systems [48.523643863141466]
我々は,インターネット・オブ・シングス・システムにおいて,センサから収集したデータセットの学習にデータアシストセンシングを用いる。
データ支援センシングによるガウス過程回帰の精度向上に寄与し,予測によるマルチチャネルALOHAの修正が有効であることを示す。
論文 参考訳(メタデータ) (2020-11-23T20:59:51Z) - Data-aided Sensing for Distributed Detection [48.523643863141466]
我々は,決定遅延制約の対象となる信頼性決定に対して,DASのJ分割に基づくノード選択基準を導出する。
提案した J-divergence に基づくDAS に基づいて,ノードを選択してログ類似率(LLR)を高速化する。
J分割に基づくDASは、他のアプローチと比較して少ないセンサーで信頼性の高い決定を下せることが確認された。
論文 参考訳(メタデータ) (2020-11-17T03:15:44Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。