論文の概要: Bootstrap Your Flow
- arxiv url: http://arxiv.org/abs/2111.11510v1
- Date: Mon, 22 Nov 2021 20:11:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-25 08:08:23.529945
- Title: Bootstrap Your Flow
- Title(参考訳): フローをブートストラップする
- Authors: Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Jos\'e
Miguel Hern\'andez-Lobato
- Abstract要約: 複雑なターゲット分布に対する正確な近似を生成するため,フローベーストレーニング手法であるFAB(Flow AIS Bootstrap)を開発した。
我々は,従来のフローベース手法が失敗する問題において,FABを用いてボルツマン分布を含む複雑な対象分布の正確な近似を導出できることを実証した。
- 参考スコア(独自算出の注目度): 4.374837991804085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Normalising flows are flexible, parameterized distributions that can be used
to approximate expectations from intractable distributions via importance
sampling. However, current flow-based approaches are limited on challenging
targets where they either suffer from mode seeking behaviour or high variance
in the training loss, or rely on samples from the target distribution, which
may not be available. To address these challenges, we combine flows with
annealed importance sampling (AIS), while using the $\alpha$-divergence as our
objective, in a novel training procedure, FAB (Flow AIS Bootstrap). Thereby,
the flow and AIS to improve each other in a bootstrapping manner. We
demonstrate that FAB can be used to produce accurate approximations to complex
target distributions, including Boltzmann distributions, in problems where
previous flow-based methods fail.
- Abstract(参考訳): 正規化フローは柔軟でパラメータ化された分布であり、重要度サンプリングによる難解な分布からの期待を近似するために使用できる。
しかし、現在のフローベースのアプローチは、モード探索行動やトレーニング損失の高分散に苦しむ、あるいは使用できないようなターゲット分布からのサンプルに依存する、挑戦的なターゲットに限られている。
これらの課題に対処するため,新たなトレーニング手順であるFAB(Flow AIS Bootstrap)において,フローとAIS(Annealed importance sample)を組み合わせて,$\alpha$-divergenceを目標とした。
これにより、フローとAISは、ブートストラップ方式で互いに改善する。
従来のフローベース手法が失敗する問題に対して,boltzmann分布を含む複雑な対象分布の正確な近似をfabを用いて生成できることを実証する。
関連論文リスト
- Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
本稿では,学習参照に基づく拡散サンプリング(LRDS)について紹介する。
LRDSは、高密度空間領域にあるサンプルの参照拡散モデルを学ぶことによって、2段階で進行する。
LRDSは、様々な難解な分布上の競合するアルゴリズムと比較して、目標分布に関する事前知識を最大限に活用することが実験的に実証された。
論文 参考訳(メタデータ) (2024-10-25T10:23:34Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Improved off-policy training of diffusion samplers [93.66433483772055]
本研究では,非正規化密度やエネルギー関数を持つ分布からサンプルを抽出する拡散モデルの訓練問題について検討する。
シミュレーションに基づく変分法や非政治手法など,拡散構造推論手法のベンチマークを行った。
我々の結果は、過去の研究の主張に疑問を投げかけながら、既存のアルゴリズムの相対的な利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-07T18:51:49Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Efficient Multimodal Sampling via Tempered Distribution Flow [11.36635610546803]
我々はTemperFlowと呼ばれる新しいタイプのトランスポートベースサンプリング手法を開発した。
種々の実験により, 従来の手法と比較して, 新規サンプリング器の優れた性能が示された。
画像生成などの最新のディープラーニングタスクに応用例を示す。
論文 参考訳(メタデータ) (2023-04-08T06:40:06Z) - Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks(GFlowNets)は、エージェントが一連の意思決定ステップを通じて複雑な構造を生成するためのポリシーを学ぶ確率的サンプルの新たなファミリーである。
本研究では,GFlowNetの分散パラダイムを採用し,各フロー関数を分散化し,学習中により情報的な学習信号を提供する。
GFlowNet学習アルゴリズムは,リスク不確実性のあるシナリオを扱う上で不可欠な,リスクに敏感なポリシーを学習することができる。
論文 参考訳(メタデータ) (2023-02-11T22:06:17Z) - Flow Matching for Generative Modeling [44.66897082688762]
フローマッチングは、連続正規化フロー(CNF)のトレーニングのためのシミュレーション不要なアプローチである
拡散経路を持つFMを用いることで、より堅牢で安定した拡散モデルの代替となることが判明した。
ImageNet上でFlow Matchingを使用したCNFのトレーニングは、可能性とサンプル品質の両方の観点から最先端のパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2022-10-06T08:32:20Z) - Flow Annealed Importance Sampling Bootstrap [11.458583322083125]
Flow AIS Bootstrap (FAB) は複雑なターゲット分布を近似したトラクタブル密度モデルである。
その結果,FABは,目標評価の100倍の精度で,MDサンプルの最大値によるトレーニングよりも優れた結果が得られることがわかった。
我々は、ターゲット密度のみを用いて、アラニンジペプチド分子のボルツマン分布を初めて知る。
論文 参考訳(メタデータ) (2022-08-03T07:44:48Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
ニューラルネットワークを用いて各戻り分布から統計量の有限集合を学習する手法を定式化する。
我々の手法は、戻り分布とベルマン目標の間のモーメントの全ての順序を暗黙的に一致させるものとして解釈できる。
Atariゲームスイートの実験により,本手法は標準分布RLベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-24T05:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。