Is Deep Image Prior in Need of a Good Education?
- URL: http://arxiv.org/abs/2111.11926v1
- Date: Tue, 23 Nov 2021 15:08:26 GMT
- Title: Is Deep Image Prior in Need of a Good Education?
- Authors: Riccardo Barbano, Johannes Leuschner, Maximilian Schmidt, Alexander
Denker, Andreas Hauptmann, Peter Maa{\ss}, Bangti Jin
- Abstract summary: Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
- Score: 57.3399060347311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep image prior was recently introduced as an effective prior for image
reconstruction. It represents the image to be recovered as the output of a deep
convolutional neural network, and learns the network's parameters such that the
output fits the corrupted observation. Despite its impressive reconstructive
properties, the approach is slow when compared to learned or traditional
reconstruction techniques. Our work develops a two-stage learning paradigm to
address the computational challenge: (i) we perform a supervised pretraining of
the network on a synthetic dataset; (ii) we fine-tune the network's parameters
to adapt to the target reconstruction. We showcase that pretraining
considerably speeds up the subsequent reconstruction from real-measured micro
computed tomography data of biological specimens. The code and additional
experimental materials are available at
https://educateddip.github.io/docs.educated_deep_image_prior/.
Related papers
- Understanding Reconstruction Attacks with the Neural Tangent Kernel and
Dataset Distillation [110.61853418925219]
We build a stronger version of the dataset reconstruction attack and show how it can provably recover the emphentire training set in the infinite width regime.
We show that both theoretically and empirically, reconstructed images tend to "outliers" in the dataset.
These reconstruction attacks can be used for textitdataset distillation, that is, we can retrain on reconstructed images and obtain high predictive accuracy.
arXiv Detail & Related papers (2023-02-02T21:41:59Z) - MetaDIP: Accelerating Deep Image Prior with Meta Learning [15.847098400811188]
We use meta-learning to massively accelerate DIP-based reconstructions.
We demonstrate a 10x improvement in runtimes across a range of inverse imaging tasks.
arXiv Detail & Related papers (2022-09-18T02:41:58Z) - Convolutional Analysis Operator Learning by End-To-End Training of
Iterative Neural Networks [3.6280929178575994]
We show how convolutional sparsifying filters can be efficiently learned by end-to-end training of iterative neural networks.
We evaluated our approach on a non-Cartesian 2D cardiac cine MRI example and show that the obtained filters are better suitable for the corresponding reconstruction algorithm than the ones obtained by decoupled pre-training.
arXiv Detail & Related papers (2022-03-04T07:32:16Z) - Self-supervised Neural Networks for Spectral Snapshot Compressive
Imaging [15.616674529295366]
We consider using untrained neural networks to solve the reconstruction problem of snapshot compressive imaging (SCI)
In this paper, inspired by the untrained neural networks such as deep image priors (DIP) and deep decoders, we develop a framework by integrating DIP into the plug-and-play regime, leading to a self-supervised network for spectral SCI reconstruction.
arXiv Detail & Related papers (2021-08-28T14:17:38Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Artifact-Free Residual Network for Single Image Super-Resolution [0.2399911126932526]
We propose Deep Artifact-Free Residual (DAFR) network which uses the merits of both residual learning and usage of ground-truth image as target.
Our framework uses a deep model to extract the high-frequency information which is necessary for high-quality image reconstruction.
Our experimental results show that the proposed method achieves better quantitative and qualitative image quality compared to the existing methods.
arXiv Detail & Related papers (2020-09-25T20:53:55Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
Inspired by the robustness and efficiency of sparse coding based image restoration models, we investigate the sparsity of neurons in deep networks.
Our method structurally enforces sparsity constraints upon hidden neurons.
Experiments show that sparse representation is crucial in deep neural networks for multiple image restoration tasks.
arXiv Detail & Related papers (2020-06-08T05:15:17Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.