Leveraging Selective Prediction for Reliable Image Geolocation
- URL: http://arxiv.org/abs/2111.11952v1
- Date: Tue, 23 Nov 2021 15:46:12 GMT
- Title: Leveraging Selective Prediction for Reliable Image Geolocation
- Authors: Apostolos Panagiotopoulos, Giorgos Kordopatis-Zilos, Symeon
Papadopoulos
- Abstract summary: We define the task of image localizability, i.e. suitability of an image for geolocation.
We propose a selective prediction methodology to address the task.
By abstaining from predicting non-localizable images, we improve geolocation accuracy from 27.8% to 70.5% at the city-scale.
- Score: 6.453278464902654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable image geolocation is crucial for several applications, ranging from
social media geo-tagging to fake news detection. State-of-the-art geolocation
methods surpass human performance on the task of geolocation estimation from
images. However, no method assesses the suitability of an image for this task,
which results in unreliable and erroneous estimations for images containing no
geolocation clues. In this paper, we define the task of image localizability,
i.e. suitability of an image for geolocation, and propose a selective
prediction methodology to address the task. In particular, we propose two novel
selection functions that leverage the output probability distributions of
geolocation models to infer localizability at different scales. Our selection
functions are benchmarked against the most widely used selective prediction
baselines, outperforming them in all cases. By abstaining from predicting
non-localizable images, we improve geolocation accuracy from 27.8% to 70.5% at
the city-scale, and thus make current geolocation models reliable for
real-world applications.
Related papers
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors [4.415977307120618]
We examine the challenge of estimating the location of a single ground-level image in the absence of GPS or other location metadata.
We introduce a novel metric, Recall vs Area, which measures the accuracy of estimated distributions of locations.
We then examine an ensembling approach to global-scale image geolocation, which incorporates information from multiple sources.
arXiv Detail & Related papers (2024-07-18T19:15:52Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - G^3: Geolocation via Guidebook Grounding [92.46774241823562]
We study explicit knowledge from human-written guidebooks that describe the salient and class-discriminative visual features humans use for geolocation.
We propose the task of Geolocation via Guidebook Grounding that uses a dataset of StreetView images from a diverse set of locations.
Our approach substantially outperforms a state-of-the-art image-only geolocation method, with an improvement of over 5% in Top-1 accuracy.
arXiv Detail & Related papers (2022-11-28T16:34:40Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Interpretable Semantic Photo Geolocalization [4.286838964398275]
We present two contributions in order to improve the interpretability of a geolocalization model.
We propose a novel, semantic partitioning method which intuitively leads to an improved understanding of the predictions.
We also introduce a novel metric to assess the importance of semantic visual concepts for a certain prediction.
arXiv Detail & Related papers (2021-04-30T13:28:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.