Adversarial machine learning for protecting against online manipulation
- URL: http://arxiv.org/abs/2111.12034v1
- Date: Tue, 23 Nov 2021 17:42:45 GMT
- Title: Adversarial machine learning for protecting against online manipulation
- Authors: Stefano Cresci, Marinella Petrocchi, Angelo Spognardi, Stefano
Tognazzi
- Abstract summary: Adversarial examples are inputs to a machine learning system that result in an incorrect output from that system.
Here, we give an overview of how they can be profitably exploited as powerful tools to build stronger learning models.
- Score: 1.3190581566723918
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Adversarial examples are inputs to a machine learning system that result in
an incorrect output from that system. Attacks launched through this type of
input can cause severe consequences: for example, in the field of image
recognition, a stop signal can be misclassified as a speed limit
indication.However, adversarial examples also represent the fuel for a flurry
of research directions in different domains and applications. Here, we give an
overview of how they can be profitably exploited as powerful tools to build
stronger learning models, capable of better-withstanding attacks, for two
crucial tasks: fake news and social bot detection.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Adversarial Learning in Real-World Fraud Detection: Challenges and
Perspectives [1.5373344688357016]
Fraudulent activities and adversarial attacks threaten machine learning models.
We describe how attacks against fraud detection systems differ from other applications of adversarial machine learning.
arXiv Detail & Related papers (2023-07-03T23:04:49Z) - Btech thesis report on adversarial attack detection and purification of
adverserially attacked images [0.0]
This thesis report is on detection and purification of adverserially attacked images.
A deep learning model is trained on certain training examples for various tasks such as classification, regression etc.
arXiv Detail & Related papers (2022-05-09T09:24:11Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Real-World Adversarial Examples involving Makeup Application [58.731070632586594]
We propose a physical adversarial attack with the use of full-face makeup.
Our attack can effectively overcome manual errors in makeup application, such as color and position-related errors.
arXiv Detail & Related papers (2021-09-04T05:29:28Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
Adrial examples causing evasive predictions are widely used to evaluate and improve the robustness of machine learning models.
We propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation.
arXiv Detail & Related papers (2021-03-02T17:47:58Z) - Fortify Machine Learning Production Systems: Detect and Classify
Adversarial Attacks [0.0]
In this work, we propose one piece of the production protection system: detecting an incoming adversarial attack and its characteristics.
The underlying model can be trained in a structured manner to be robust from those attacks.
The adversarial image classification space is explored for models commonly used in transfer learning.
arXiv Detail & Related papers (2021-02-19T00:47:16Z) - Detecting Adversarial Examples by Input Transformations, Defense
Perturbations, and Voting [71.57324258813674]
convolutional neural networks (CNNs) have proved to reach super-human performance in visual recognition tasks.
CNNs can easily be fooled by adversarial examples, i.e., maliciously-crafted images that force the networks to predict an incorrect output.
This paper extensively explores the detection of adversarial examples via image transformations and proposes a novel methodology.
arXiv Detail & Related papers (2021-01-27T14:50:41Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - Adversarial Machine Learning in Network Intrusion Detection Systems [6.18778092044887]
We study the nature of the adversarial problem in Network Intrusion Detection Systems.
We use evolutionary computation (particle swarm optimization and genetic algorithm) and deep learning (generative adversarial networks) as tools for adversarial example generation.
Our work highlights the vulnerability of machine learning based NIDS in the face of adversarial perturbation.
arXiv Detail & Related papers (2020-04-23T19:47:43Z) - Adversarial Attacks on Machine Learning Cybersecurity Defences in
Industrial Control Systems [2.86989372262348]
This paper explores how adversarial learning can be used to target supervised models by generating adversarial samples.
It also explores how such samples can support the robustness of supervised models using adversarial training.
Overall, the classification performance of two widely used classifiers, Random Forest and J48, decreased by 16 and 20 percentage points when adversarial samples were present.
arXiv Detail & Related papers (2020-04-10T12:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.